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Preventing Vanishing Gradient Problem of Hardware
Neuromorphic System by Implementing Imidazole-Based

Memristive ReLU Activation Neuron

Jungyeop Oh, Sungkyu Kim, Changhyeon Lee, Jun-Hwe Cha, Sang Yoon Yang,

Sung Gap Im, Cheolmin Park, Byung Chul Jang,* and Sung-Yool Choi*

With advances in artificial intelligent services, brain-inspired neuromorphic
systems with synaptic devices are recently attracting significant interest to
circumvent the von Neumann bottleneck. However, the increasing trend of
deep neural network parameters causes huge power consumption and large
area overhead of a nonlinear neuron electronic circuit, and it incurs a
vanishing gradient problem. Here, a memristor-based compact and
energy-efficient neuron device is presented to implement a rectifying linear
unit (ReLU) activation function. To emulate the volatile and gradual switching
of the ReLU function, a copolymer memristor with a hybrid structure is
proposed using a copolymer/inorganic bilayer. The functional copolymer film
developed by introducing imidazole functional groups enables the formation
of nanocluster-type pseudo-conductive filaments by boosting the nucleation
of Cu nanoclusters, causing gradual switching. The ReLU neuron device is
successfully demonstrated by integrating the memristor with amorphous
InGaZnO thin-film transistors, and achieves 0.5 p] of energy consumption
based on sub-10 pA operation current and high-speed switching of 650 ns.
Furthermore, device-to-system-level simulation using neuron devices on the
MNIST dataset demonstrates that the vanishing gradient problem is
effectively resolved by five-layer deep neural networks. The proposed neuron
device will enable the implementation of high-density and energy-efficient
hardware neuromorphic systems.

that perform intelligent tasks. In particu-
lar, the convergence of Al and Internet-of-
Things (IoT) technology can provide smart
IoT edge devices that can easily offer AI ser-
vices to the general public. However, the
current growing trend of neural network
parameters for advanced Al services re-
quires energy-hungry data transfer between
the processor and off-chip memory in the
conventional von Neumann system.['] To
eliminate the energy-consuming data trans-
fer of synaptic weights, in-memory comput-
ing with non-volatile memories has been
extensively explored for vector-matrix mul-
tiplication (VMM) operation, and on-chip
synaptic weight storage for multi-layer per-
ceptrons with few hidden layers.[**] How-
ever, modern deep neural networks (DNNs)
with delicate decision boundaries have been
developed with several layers, such as 152
layers of ResNET,/”] where the output nodes
of each layer generate outputs via the non-
linear activation function on the weighted
sum. Most of the approaches for imple-
menting the activation function utilize gen-
eral processors to compute and propa-
gate activation functions, which eventu-
ally causes energy-hungry data transfer in

1. Introduction

Recent advances in artificial intelligence (AI) have revolution-
ized existing electronic industries by creating high-tech products

and out of memory, and requires a large-area analog-to-digital
converter (ADC) at the end of the synapse array.[®®] In addition
to inefficient energy consumption and a large footprint, the use of
logistic sigmoid or tanh activation functions in the hidden layer
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causes a vanishing gradient problem when DNNs are trained us-
ing the backpropagation learning rule.’) To overcome this prob-
lem, the Rectified Linear Unit (ReLU) activation function with
a derivative size of one is widely utilized for DNN and convo-
lutional neural networks (CNN).['% Therefore, the implementa-
tion of ReLU activation functions using energy- and area-efficient
hardware is essential for smart [oT edge devices.

In early efforts, conventional metal-oxide-semiconductor
(CMOS) circuits !l and ADC with reconfigurable function
mapping!'?l were investigated to implement nonlinear activa-
tion functions. However, their energy consumption is compa-
rable to the energy consumed by an entire synapse array dur-
ing the VMM operation. [%!3] Considering that recent DNNs re-
quire an increasing number of activation functions, the imple-
mentation of an energy- and area-efficient activation function
that can be integrated with the synapse array is inevitable. Thus,
the challenges of these circuit-based approaches have turned
the research community’s attention to emerging nanoelectronic
devices for low-power, high-density neuron-device applications.
Phase-change memory, magnetic tunnel junctions, leaky ferro-
electric field-effect transistors, and single latch-up transistors
have been investigated.'*'71 While successfully mimicking a
leaky integrate-and-fire model for the spiking neuron, none of
these devices implemented the ReLU activation function, which
requires volatile and gradual resistance change. A recent study
reported a ReLU activation function using a volatile Mott de-
vice based on VO, with a resistor heater.['*] However, the four-
terminal Mott device is unsuitable for developing highly scaled
neuron devices, and requires a large operation current (~mA)
for heater operation and a small on/off ratio.l'] Furthermore, the
VO, active material has poor thermal stability owing to its well-
known metal-to-insulator transition occurring at a low tempera-
ture of 340 K.[**] Consequently, NbO, has been primarily studied
for frequency ReLU neurons,? temporal coding LIF neurons,?!]
and selector devicel??! applications. In contrast, volatile diffusive
memristors have low operating currents and high on/off ratios
with fast switching speeds.[?*?*] Despite these advantages, diffu-
sive memristors suffer from abrupt resistive switching and inter-
nal ionic dynamics that feature digital output and temporal signal
processing,*! making it challenging to demonstrate a continu-
ous activation function for implementing DNN. Therefore, it is
necessary to engineer both the material and device structures to
implement ReLU activation function with diffusive memristor.

In this study, we propose a compact and energy-efficient
memristor-based ReLU, called mReLU, for neuromorphic hard-
ware systems, which can be utilized to negate vanishing gradient
problem in DNNs. The mReLU neuron device features an analog
voltage output with a current input, as well as gradual and volatile
switching, both of which are essential for ReLU activation func-
tion. First, we designed a memristor with an organic/inorganic
hybrid switching structure to implement a volatile and gradual
resistive switching. Imidazole-based copolymer switching layer
is formed via solvent-free initiated chemical vapor deposition
(iCVD), which preserves inherent material properties during
copolymerization. The imidazole functional group, which has
two favorable bonding sites with Cu, boosts the nucleation of Cu
clusters, enabling the formation of cluster-type conductive fila-
ments. For volatile switching, a hybrid device structure with dif-
ferent film densities was adopted, with an atomic layer deposi-
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tion (ALD)-grown Al,O, layer serving as a high-density switch-
ing layer. The mReLU neuron device was demonstrated by inte-
grating the memristor with amorphous InGaZnO (a-IGZO) thin-
film transistors (TFTs), and features sub-10 uA driving current
with a fast switching of 650 ns. The energy consumption of the
memristor-based ReLU neuron was calculated as 0.5 pJ, which
is two orders of magnitude smaller than that of a recently re-
ported device.[¥] We performed a device-to-system-level simu-
lation with mReLU neurons to investigate the training perfor-
mance of DNNs according to the activation function. It was con-
firmed that mReLU could effectively reduce the gradient van-
ishing problem in the five-layer DNN for classifying the MNIST
dataset. Finally, we simulated edge detection on a real-world im-
age using mReLU to demonstrate the functional operation of the
proposed device. Our results revealed that compact and energy-
efficient mReLU neurons could enable highly integrated hard-
ware neural networks by connecting adjacent layers with reduced
performance degradation.

2. Results and Discussion

A DNN, which consists of numerous neuron layers, is essential
for implementing advanced Al-based tasks. Figure 1a shows the
structure of a fully connected DNN, in which several neurons are
connected with synaptic weights. The input data applied to the
DNN, such as images with dense features, are multiplied by the
corresponding synaptic weights, and the multiplication results
are accumulated in the neurons. Because the synapses connect-
ing the neuron layers are only responsible for the linear VMM, it
is essential to use the nonlinear activation function in the neuron
layer to construct a complex decision boundary. Figure 1b shows
two representative activation functions. To achieve the minimal
loss function, which reflects the precision of the network, an
optimal activation function should be adopted because the
saturation speed of the chain-rule-based backpropagation algo-
rithm is strongly dependent on the derivative of the activation
function. The sigmoid function is utilized to consider its smooth
curve with derivatives of less than one. However, deeper DNN
training of the synapses far from the output layer is slowed down
because of the vanishing gradient problem, which results in
the partial derivative of the loss function being close to zero by
the successively multiplied derivative of the activation function.
However, because the ReLU activation function has derivatives
of one in all positive outputs, the network with the ReLU acti-
vation function can quickly achieve the minimal loss function.
In contrast to the temporal signal processing neurons used in
spiking neural network, after the transition point of x = 0, the
ReLU activation function produces a linear output that depends
only on the current input, regardless of any previous inputs (Fig-
ure 1b). To implement this ReLU activation function, an artificial
neuron device must have volatile, linear, and gradual switching
characteristics. We developed a volatile memristor-based ReLU
activation device, called mReLU, with these characteristics and
low power consumption in compact devices for energy-efficient
hardware neuromorphic systems. In the neuromorphic system
harnessing the crossbar synaptic array, the voltage signal applied
to all rows is multiplied by the corresponding conductance equiv-
alent to the synaptic weights, and the results are accumulated
at the column connected to the neuron in the form of a current
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Figure 1. Activation functions in DNN and ReLU neuron implementation in neuromorphic system. a) Schematic illustration feed forward propagation
and backpropagation of DNN. b) Two representative activation functions and their derivatives. c¢) Conceptual circuit diagram of fully analog hardware
neuromorphic system. d) Schematic diagram of proposed mRelLU neuron circuit. e) Cross-sectional TEM image of the hybrid memristor. f) The measured
quasi-static current-voltage (I-V) switching characteristics with I of 1 pA. g) Device schematics with CF morphology illustration for each resistance
state. h) Resistance of the hybrid memristor when the I is swept from 0 to 5 pA.

(Figure 1c). The proposed mReLU receives the weighted sum
current from the synaptic array via a current mirror, and outputs
the linear voltage generated by the voltage divider to be trans-
ferred to the next layer (Figure 1d). A volatile memristor with
gradual resistance modulation by the input current is essential to
mimic the ReLU activation function, which is the linear increase
in the output voltage with respect to the input current. To imple-
ment these key features, we developed an mReLU device using
an organic/inorganic double-layer memristor with a hybrid
structure of Cu/copolymer (15 nm)/AL O, (3 nm)/Au, in which
the copolymer was designed for essential gradual switching, as
will be discussed in more detail subsequently (see Figure 1e).
Figure 1f shows the I-V characteristics of the volatile switching
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of our mReLU device. It is noteworthy that the volatile switching
of the memristor is essential for DNN neuron devices, since
the neuron outputs should only depend on the current input
signal, regardless of previous inputs. The mReLU showed 1)
an abrupt conductance increases when the voltage exceeded the
threshold during a positive bias forward sweep DC sweep with
default delay required to reach the steady state owing to the fast
operation speed of the memristor, and then 2) relaxed back to an
insulating state during the positive backward sweep. The mem-
ristors exhibited gradual relaxation at each driving current (see
Figure S3, Supporting Information), and this gradual relaxation
shows a narrow distribution of relaxation speed.[?) Asymmetric
hysteresis loops were observed because of the asymmetric
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electrode structure of the mReLU device. During the negative
bias sweep, 3) no abrupt increase in conductance was observed,
even at voltages over the threshold. Figure 1g shows a schematic
of the operational principle of asymmetric volatile switching.
In the copolymer layer, the Cu injected during the initial elec-
troforming process forms a local conduction path in the shape
of a cluster, whereby the origin is presented in Figure 2. The
ALD-grown Al, O, layer with a relatively high density compared
to the copolymer layer enables volatile switching because a
small amount of Cu penetrates into the Al,O, layer owing to the
high film density and the penetrated Cu nanoclusters (NCs) are
dissolved by the high mechanical stress gradient.[?’] Generally,
a local increase in impurities changes the physical, chemical,
transport, and stress gradient properties. The local stress ¢ can
be estimated by ¢ = x£2, where Any, [cm~] denotes the local
change of np, due to cation migration, n denotes the background
atomic density of the electrolyte, and K = E/3(1-2v) symbolizes
the bulk modulus, where E denotes the Young’s modulus and
v denotes the Poisson coefficient.!””] When compared to pV3D3
material, Al,O, material has a higher density, Young’s modular,
and Poisson coefficient (Table S1, Supporting Information).
When Cu cations penetrate the Al,O, layer, this creates a high
mechanical stress gradient, which makes Cu cations move back
toward the top electrode to recover the stress field, enabling
volatile switching of mReLU device. When a positive voltage was
applied to the top electrode (TE), the minimal amount of Cu
injected into the Al,O, near the bottom electrode (BE) increased
the conductance by reducing the tunneling gap (1 in Figure 1f).
However, as the applied electric field weakened, the infiltrated
Cu atoms decomposed or returned to the adjacent Cu clusters
by surface diffusion to minimize the surface energy, thereby
reverting to the insulating state (2 in Figure 1f). Owing to the
asymmetric electrode structure, when a negative voltage was ap-
plied to the TE, the tunneling gap between the BE and Cu cluster
near the Al,O, layer did not decrease, and the resistance state
remained unchanged (3 in Figure 1f). Our mReLU device shows
successfully controllable conductance tuning by modulation of
the tunneling gap in the low-current input range (~uA), as shown
in Figure 1h. Therefore, conductance control with a low input
current indicates that our mReLU device is suitable for the im-
plementation of a low-power operating ReLU activation function.

The main driving principle of the mReLU device with struc-
ture of Cu/copolymer/Al,O, /Al to realize the ReLU function is
the formation of a pseudo-CF composed of metal NCs with a tun-
neling gap. The tunneling gaps between NCs in the pseudo CF
can be controlled by the electrochemical reactions and surface
diffusion of active metal NCs, such as Cu or Ag, considered as
bipolar electrodes,!?*-3% which are electrochemically influenced
by the electric current flowing through the CF. Note that the mor-
phology of the CF determines how the conductance changes in
response to the flowing current. Figure 2a compares the conduc-
tance modulation according to the continuity of the conduction
path in the switching medium: continuous CF and pseudo CF,
which exhibited a quantum jump in conductance as the applied
input current increased. As the tunneling gaps are filled with in-
filtrated Cu, atomically thin metal filaments are formed between
the TE and BE (Figure 2b). The resulting conductance abruptly
increases to the quantum conductance (G, = 2¢* /h ~ 77.5 pS) ow-
ing to the switched conduction mechanism from electron tunnel-
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ing to ballistic transport by atomic point contact formation.3!32]

However, gradual conductance evolution of CF is achieved with
metal NC-based pseudo CF as its dominant conduction mecha-
nism is electron tunneling between metal NCs.[**! As illustrated
in Figure 2¢, NCs are discretely connected to the adjacent metal
NCs through the tunneling gap, even when the tunneling gap be-
tween specific NCs disappears by merging. Therefore, in pseudo
CF, the dominant conduction mechanism remains electron tun-
neling, which results in gradual conductance modulation.

To form the pseudo-CF essential for gradual conductance
switching, the morphology of the CF should be controlled by
engineering the switching-medium material. The morphology
of CF is determined by the ion mobility and redox reactions in
the switching medium.!?! Copolymers synthesized using various
monomers with different ion mobilities and electrochemical po-
tentials are promising candidates as switching medium to mod-
ulate the CF morphology as well as a useful platform for scruti-
nizing the physics of CF morphology. To develop an mReLU de-
vice, we controlled the formation of metal NCs by copolymeriz-
ing vinylimidazole (VI) with two favorable bonding sites with Cu
in the V3D3 polymer matrix with low ion mobility.?*] VI binds
chemically to Cu ions, and also offers a reduction site for Cu
ions in the medium owing to its electron-donating nature,!3>3]
as shown in Figure 2d. Therefore, the uniformly distributed VI
enhances the reduction rate of the Cu ion, serves as a nucleation
site for Cu NCs, and contributes to the formation of pseudo CF
based on Cu NCs. To synthesize a uniformly distributed func-
tional material, an initiated chemical vapor deposition (iCVD)
process was utilized (see Figure 2e). The iCVD process is a novel
solvent-free technique for forming a polymer thin film via ini-
tiator radicals generated by thermal filaments, and is suitable
for the formation of memristor materials owing to its excellent
film uniformity, thickness control, low-temperature processing,
and copolymerization of monomers with different polarities.*’!
The 1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane (V3D3), utilized
as a copolymer backbone, has a symmetric structure with three
cross-link sites, enabling high crosslinking density, which facil-
itates excellent thermal/chemical stability (Figure 2f).**! How-
ever, the V3D3 material with high ring strain owing to the small
ring size of the symmetrical cyclosiloxane makes it difficult to in-
teract with Cu;*! thus, the pV3D3 switching layer has low ion
mobility and forms a continuous thick conical CF owing to the
lack of reduction sites in the medium, as demonstrated via high-
resolution transmission electron microscopy (TEM) in our pre-
vious work.3!l Therefore, by copolymerizing VI containing imi-
dazole functional groups with high polarity on the stable V3D3
polymer backbone, V3D3-VI copolymer materials have been de-
veloped to enhance the nucleation of Cu NCs and induce Cu NCs-
based pseudo CF.

For a detailed investigation of the copolymer films, a composi-
tion analysis of the copolymer was conducted via X-ray photoelec-
tron spectroscopy (XPS). Five different polymeric thin films were
synthesized at different monomer flow rates. In the XPS survey
shown in Figure 2g, as the VI flow rate increased, it was observed
that the N1s peak increased while the Si2p peak decreased. Be-
cause V3D3 contains a silicon atom and VI contains a nitrogen
atom, it enables the estimation of the contents of VI and V3D3
by investigating the ratio between silicon and nitrogen, which
is used as a process-monitoring index for material optimization
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Figure 2. CF morphology modulation with copolymer switching layer. a) Comparison of change in conductance with respect to the input current by
the CF morphology. Schematic illustration of CF morphology: b) continuous CF and c) pseudo CF. d) Chemical bond geometric of imidazole functional
group on Cu (111) surface. e) Schematic illustration of iCVD process. Decomposed thermal initiators by heated filaments change into radicals, and react
with monomers. Monomers react with radicals, change into initiated monomers, and are polymerized onto the substrate. f) Synthetic scheme of the
pV3D3 and the p(V3D3-co-VI) film. XPS spectra: g) survey scans of copolymer films and high-resolution scan of h) N1s and i) Si2p of the copolymer
film with 30% of VI content. Cross-sectional STEM analysis: j) BF-STEM image and k) HAADF-STEM image of the copolymer memristor after forming.
l) Atomic-resolution HAADF-STEM images of the CF region.
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(See Figure S1, Supporting Information). With this process mon-
itoring index, it was confirmed that the flow rate of monomers
enables precise control of the VI content in the copolymer film,
which is related to important kinetic factors, such as metal mobil-
ity and redox rate. Among various copolymers, a copolymer film
with 30% of VI content was adopted as the optimized switching
medium for the generation of sub-10 nm Cu NCs. In the opti-
mized copolymer, the deconvolution results of N1s peak consist
of 400.3 and 398.4 eV peaks, which are identified as the imi-
dazole ring containing pyridinic (N-C3) and pyrrolic (C-N=C)
bonds, respectively (Figure 2h).l*0l Other characteristic peaks cor-
responding to the siloxane (Si—O) bond were found in the Si2p
spectra at 101.5 eV, which is reported to be the cyclosiloxane peak
of V3D3 (Figure 2i).3* Notably, the imidazole and cyclosiloxane
groups were not damaged by the initiator or thermal filament of
the iCVD process during deposition.

The morphology of the CF in the copolymer switching layer
was investigated via cross-sectional scanning TEM (STEM) anal-
ysis. In the bright-field (BF)-STEM image, it was observed that Cu
metal penetrated into the copolymer switching layer in the form
of NCs in the local region of sub-50 nm (Figure 2j). Electron en-
ergy loss spectroscopy (EELS) identified the penetrated Cu NCs
by revealing peaks at 935 and 956 eV, which correspond to the
L2 and L3 edges of Cu (See Figure S2, Supporting Information).
The Cu NCs were clearly described by high-angle annular dark
field (HADDF)-STEM, as shown in Figure 2k, 1. Therefore, non-
volatile Cu NCs with a size of sub-5 nm were successfully formed
in the copolymer switching medium, which resulted from many
reduction sites and a high reduction rate, limiting further growth
of NC by the distributed VI.

To demonstrate the functionality of the copolymer-based
mReLU device in implementing the ReLU activation function,
we investigated its switching characteristics. The mReLU device
returned to a high resistance state in the backward sweep during
100 consecutive DC cycles with an external compliance current
(Icc) of 1 pA, indicating reliable volatile switching (Figure 3a).
Note that this volatile characteristic is inevitable for the imple-
mentation of ReLU neurons because the ReLU neuron output
must be determined only by the input at any particular time, re-
gardless of the history of the input and output. The volatile na-
ture of the mReLU device results from the high stress gradient
formed by the mechanical stress of the high-density Al,O; layer
compared to that of the pV3D3 layer, resulting in the surface dif-
fusion or dissolution of the Cu NCs.1?”] The stress gradient be-
tween Al,O, and pV3D3 layers generates the additional force for
Cu cation migration toward the top electrode. The cumulative dis-
tribution of the operational set and hold voltages showed a nar-
row distribution without overlap (Figure 3b). Contrary to diffu-
sive memristors based on dielectric doping,?*! our ReLU device
requires metal injection from the active electrode, enabling asym-
metrical switching with rectifying features. In addition to volatile
switching, the gradual conductance modulation necessary to im-
plement the ReLU function was experimentally demonstrated in
our ReLU device (Figure 3c). Because the Cu supply for forming
Cu NCs is sufficient from the active TE, the tunneling gap can be
adjusted in response to the flowing current. As the ReLU neuron
circuit based on our mReLU device receives a summation cur-
rent as input, current pulses with different heights (Ios) of 1 pA
and 100 nA were applied. Figure 3d exhibits the reliable volatile
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switching of our mReLU device via a consecutive current pulse.
The resistance of the device was well controlled with respect to
the I and exhibited volatile characteristics. Even when operated
consecutively, the resistance state of the mReLU does not drift,
and the output depends only on the input, regardless of the re-
sistance state caused by prior electrical stimulation. Moreover, to
further analyze the gradual switching and energy consumption,
pulse voltages were applied to our mReLU device. A series resis-
tance of 1 MQ was attached to the mReLU device to prevent a
hard breakdown. The resistances of the mReLU device were well
modulated in response to 1ms-wide voltage pulses with various
amplitudes, as shown in Figure 3e. The resistance decreases as
the amplitude of the voltage pulse increases. This is attributed to
the decreased tunneling gap between the Cu NCs owing to the
pulse voltage, which is consistent with the results shown in Fig-
ures 1h and 3c. The latency of the mReLU was 650 ns, which is de-
fined as the time interval between the pulse and saturation point
of the output pulse (Figure 3f). Considering 650 ns-wide pulse
voltage, the energy consumption of the mReLU neuron is calcu-
lated as 0.5 pJ, which is approximately 400 times smaller than
the energy consumption of the recently reported Mott ReLU de-
vice (199.5 pJ) (Table 1). This ultralow energy consumption is at-
tributed to the tunneling conduction mechanism of our mReLU
device. Moreover, the proposed mReLU can be used as a replace-
ment of area and energy-intensive CMOS activation neurons,
which most general computing purpose neuromorphic hardware
relies on.

To demonstrate the feasibility of our mReLU device for emu-
lating the ReLU neuron, we integrated an mReLU and a-IGZO
transistor (Figure 3g). An integrated a-IGZO transistor is nec-
essary to map the gradual switching of mReLU onto the out-
put voltage (V,,,) for the ReLU function by forming a voltage di-
vider circuit. The a-IGZO transistor has been adopted to imple-
ment the ReLU function, which generates low output in range of
the negative input voltage, primarily because the wide bandgap
(=3 eV) of a-IGZO material can suppress the off current and the
gate-induced drain leakage current. This is the reason why many
semiconductor industry and research groups have studied the a-
IGZO channel material for stackable static random access mem-
ory (SRAM) and 3D dynamic random access memory (DRAM)
Cell transistor.*1*2] An optical microscopy (OM) image of the in-
tegrated device is shown in Figure 3h. The a-IGZO transistor was
fabricated with a W/L ratio of 100 um/10 pm, and the mReLU was
patterned at 50 um X 50 pm on the drain region of the a-IGZO
transistor (Figure S4, Supporting Information). The mReLU, ca-
pable of a low-temperature process below 150 °C, is suitable for
integration with a-IGZO transistors. The weighted sum current
from the synaptic array flows into the a-IGZO transistor through
the current mirror circuit, which results in resistance modulation
of the mReLU. Considering that the supply voltage (V) is di-
vided between the a-IGZO transistor and mReLU, V, , increases
linearly as a result of the decreasing resistance of our mReLU de-
vice in response to the increasing sum current. To explore the fea-
sibility of a large-scale neuron array, we investigated the device-to-
device variation of a-IGZO transistors and the bilayer memristors
that constitute the proposed neuron circuit (Figures S5 and S6,
Supporting Information). It was found that 20 a-IGZO transis-
tors exhibited a narrow threshold voltage distribution of 0.038 V,
and the uniform characteristics for the volatile and incremental
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Inset shows resistance fitting as the function of the current. Pulse switching
100 nA and 1 pA current pulse with 5 ms pulse with and 10 ms period, alte

of the hybrid memristor. d) Resistance state change of the device by flowing
rnatively. e) Resistance change of the device with 1 MQ of series resistance

by stimulating the incremental voltage pulse. f) Voltage pulse applied to the device and the current flow as a function of time. g) Schematic diagram of

integrated mReLU neuron. h) OM image of integrated mReLU neuron with
the device as a function of mirror current. Red circles are experimental data

conductance update characteristics of 25 bilayer memristors were
verified. The threshold voltage and transconductance of the a-
IGZO transistor and the current-conductance characteristics of
the mReLU were used to model the integrated device (Figure
S7a, Supporting Information). The input current was success-
fully copied to the output transistor through the current mirror
(Figure S7b, Supporting Information). The relationship between
the current flowing through the output transistor and V,,,, is illus-
trated in Figure 3i. The result of SPICE, well known as a general-
purpose circuit simulator, shows a complete correlation between
the mirrored current and V_,, indicating that a function for the
input current and output voltage has a ReLU functionality. The
experimentally measured results exhibit the same trend as the

Adv. Mater. 2023, 35, 2300023 2300023

11GZO TFT-1 hybrid memristor. i) Voltage ratio between Vg1 and Vpp of
and black circles are SPICE simulation results.

simulation results; thus, demonstrating the feasibility of using
mReLU neurons for implementing ReLU neurons. The output
of our mReLU device was the voltage. There is no need for large-
area analog-digital circuitry because this output voltage can be di-
rectly applied to the following neuron layer as the input voltage.
Additionally, the small footprint of our mReLU device allows the
integration of each column of the synaptic array, enabling fast
parallel operation without time multiplexing.

To confirm the applicability of the proposed mReLU neurons
to the DNN, a device-to-system-level simulation for evaluating
the vanishing gradient problem was performed. The role of
neurons in DNN inference includes the summation of weighted
currents from synapses, imparting nonlinearity to the

(7 of 17) © 2023 Wiley-VCH GmbH
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Table 1. Summary of analog artificial neurons for the hardware-based neuromorphic system.

Neuron Materials Switching Mechanism Structure Neuron Model Energy Neural Network Learning Rule
Complexity Consumption Model

Pt/SION,:Ag/Pti*] Diffusive Dynamics M1C LIF - SNN STDP

GeSb, Teg 4] Phase Change ™ IF 5p) - -

TiN/NbO, /TiN(21] Metal-Insulator Transition ™ LIF 0.5 p) Temporal Coding Temporal BP

SNN

Silicon NpN junction!“6] Baristor 1T LIF 6 p) - -

MJT Materiall®] Magnetic Tunneling Junction 1T LIF 7.11) SNN STDP

Hfy.5Zrg.50,*) Ferroelectric 1F-1TIR LIF - SNN -

cMost Analog CMOS >3 OPAMPs Sigmoid 3410 p) DNN BP

TiN/NbO, /a-Sil?0] Metal-Insulator Transition 1T-1M Frequency- - SNN Stochastic Gradient

RelLU Descent
Cu/p(V3D3-co-VI)/Al,O; /Al [This Work] Diffusive Dynamics 2T-1M RelLU 0.5p) DNN BP

summation currents, and sending out the outputs to the
next neuron layer (Figure 4a), which correspond to Kirchhoff’s
law in the synaptic crossbar array, rectifying function of mReLU,
and voltage output, respectively. Furthermore, in addition to
calculating the derivative value of the neuron output for error-
backpropagation, the neuron for training the DNN sends the
output to the next neuron layer. Because the mReLU device has
a derivative value of zero or one on its output, the computational
overhead for calculating the derivative of the activation function
can be minimized. The performance of the proposed mReLU
neuron was evaluated using a five-layer DNN with a 784-100-
100-100-100-10 structure (Figure 4b). MNIST handwritten digits
with 60000 training samples and 10000 test samples with 28
X 28 pixels were utilized. The performance of the DNN was
evaluated based on the mReLU and sigmoid activation functions
used in the hidden neuron layer, and the gradient vanishing
problem with a minibatch size of 500 was analyzed through
the cross-entropy loss function using the Softmax activation
function. The recognition rate of the neural network using the
mReLU and sigmoid functions achieved recognition rates of
95.4% and 91.2%, respectively (Figure 4c). This difference in
the recognition rate is attributed to the learning speed of the
neural network, which is supported by the rapid convergence
of the loss function by the fast training of the neutral network
(Figure 4d). The difference in the convergence speed of the
loss function is interpreted as gradient loss occurring in the
deep layer, which may be caused by the distribution of the
output. The distribution of the output is significantly affected
by the number of input neurons and initial synapse weight
distribution, and was evaluated using the He normal distribu-
tion weight initialization (Figure 4e,f).[*}] The sigmoid function
exhibits a wider output distribution in the initial neuron layer,
which has more input neurons than the other layers (Figure 4e);
therefore, the derivatives of the neuron tend to be smaller in the
initial neuron layer, indicating the vanishing gradient problem.
In contrast, the mReLU function features a uniform output
distribution in all neuron layers with an average value close to
zero, indicating that half of the neurons have a derivative of one
(Figure 4f). Therefore, although the sigmoid function showed
a smaller weight update in the first synaptic layer than in the
fifth synaptic layer (Figure 4g), the mReLU function exhibited
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a uniform weight update in both the first and fifth synaptic
layers (Figure 4h). To verify the neural network performance
degradation due to the non-ideal effect of mReLU neuron, we
performed device-to-system level simulations of five-layer DNN
with mReLU neuron for MNIST handwritten digit recognition
(Figure 4i). All neuron circuits, except for the software neuron,
return a maximum output voltage of 2 V, which corresponds to
the driving voltage of the mReLU circuit. mReLU neurons with
different temporal variations were evaluated, while the ideal
mReLU neuron represents a neuron without temporal variation.
The mReLU neuron, with a maximum value of 2 V and 9.9% of
temporal variation, achieved a recognition rate of 95.4%, while
software ReLU exhibited a 97% recognition rate.

To demonstrate the functional operation of our mReLU neu-
ron, we simulated the edge detection operation using convolu-
tional filters on a real-world image (Figure 5a). We recognized
images by combining low-level edges, and this function is im-
plemented through a convolution. During convolution, a filter
is applied to each pixel and the local neighborhood of the im-
age, producing an output from the weighted sum between the
filter weights and the input pixel values. Simple vertical and lat-
eral filters were used to evaluate the performance of the mReLU
neurons (Figure S8, Supporting Information). From four repre-
sentative 10 x 10 input patches (Figure 5b), the summation cur-
rents obtained through the convolution operation with vertical
and horizontal filters were activated using mReLU neurons. Fig-
ure 5¢ shows the summation current convolved through the ver-
tical and horizontal filters. It was observed that the magnitude
and sign of the current change depended on the pixel position.
The output voltage from the mReLU is shown in Figure 5d, and
the maximum voltage is bounded to 2 V as V;, and rectified as a
positive number. Figure 5e shows the output voltage for the entire
image. Utilizing the mReLU activation function, the lateral and
vertical edges were detected well. Therefore, the mReLU neuron
device has great potential as a compact low-power neuron device
for hardware-based neuromorphic systems.

3. Conclusion

We developed a compact and energy-efficient memristor-based
ReLU activation neuron device that can solve the chronic

© 2023 Wiley-VCH GmbH

95LB01 7 SUOLULLIOD dAII.D) 3{cedl|dde 8Ly Aq peusenob a.1e sajoie YO 9sN Jo SajnJ 10} Ariq1T 8UljUO AB|IM UO (SUONIPUOD-pUe-SWB)LI0O" A8 | 1M Afe.q1|Bul [UO//ScY) SUORIPUOD pue SWS | 8L} 38S " [£202/80/9T] U0 Aeiqi8UlUO A8]IM *JO 3ININSU| peoURAPY 88103 AQ £20005202 BWPe/Z00T 0T/I0p/Wo A8 | Ake.q | puljuo//Sdny wouy papeojumod ¥Z ‘€202 ‘S60rTZST



ADVANCED
SCIENCE NEWS

ADVANCED
MATERIALS

www.advancedsciencenews.com

Neuron

xW Quantization &
Device Variation

\
e Feed
> / Forward
v Output
/

Bi
AW I De:ir\‘I:rt}ilve

Previous Neuron Layer
O 0O

www.advmat.de

Five-Layer DNN

O
O
O

Q000000
Q0000
®--0000
Q0000
Q0000

Error «— p Bath- Q: Input Neuron O : Hidden Neuron O: Output Neuron
Calculation ropagation
c d - f
100 : —_
= @ mReLU Activation 1.0 =1k Si id Acti : = g RelU Acti :
S o Sigmoid Activation " <6l igmoid Activation <6} e ctivation
g% g 0814 7 4 g4
= S 06 2o} g2
'g TEu 0.4 g 2| 5 2|
o 85 = = 4l = 4l
& So2 g £
(4 @ mReLU Activation = E -6} gE-6F
he 2 AW @ Sigmoid Activation =
%4 2 3 4 5 09 S @® : @3
£ h 0 1 2 3 4 o 'ﬂe‘ a\le‘ o
pochs Epochs \5‘\:‘\ 1“‘)\, 3V oV A
g Sigmoid Activation h mRelLU Activation |
10 " 1st Layer| [ 5th Layer| 10 ] 1st Layer| 5th Layel
8 8 é
@ 6 @ 6 g
g g 'g Software
o4 o4 -4 —— Ideal mReLU Neuron
& & e :
2 2 8 60 |
h'L m_mﬂﬂ h‘m‘h'hw © [ = Copolymer mReLU Neuron
0 0 50 | 1 h !
0 1 2 3 4 5

Normalized AW (A.U.) Normalized AW (A.U.)

Normalized AW (A.U.) Normalized AW (A.U.)

Epoch

Figure 4. Vanishing gradient simulation for DNN a) Conceptual diagram of the neuron role in DNN. b) A five-layer DNN used to classify handwritten
digits in the MNIST database. c) Accuracy and d) normalized loss with the sigmoid and the ReLU activation function. Summation current output of the
trained DNN with e) the sigmoid and the ReLU activation function. Probability distribution of the weight update using g) the sigmoid and h) the ReLU
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vanishing gradient problem in advanced DNN. The mReLU neu-
ron device has current input and voltage output, which allows
direct connection with the adjacent synapse layer. To emulate
the volatile and linear resistance changes of the memristor, a hy-
brid switching structure was introduced. By copolymerizing the
monomers, the CF morphology was modulated to cluster-based
CF with gradual conductance modulation, and a volatile nature
was achieved by utilizing a high-density Al,O, layer. The fab-
ricated device achieves low power consumption based on sub-
10 pA operation and fast switching thanks to cluster-based CF.
We performed a device-to-system-level simulation to investigate
hardware neuromorphic systems based on mReLU, demonstrat-
ing that our mReLU neuron device can effectively solve the van-
ishing gradient problem. Furthermore, we demonstrated that the
mReLU neuron device can be used as an activation function for
edge detection and neurons in DNNs. We believe that the pro-
posed mReLU can reduce the energy and area overload on the
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peripheral circuit for implementing the activation function, and
solve the chronic vanishing gradient problem in DNN, thereby
providing a solution for energy-efficient hardware neuromorphic
systems.

4. Experimental Section

Polymeric Film Deposition via iCVD: Five different polymeric layers
were deposited into the iCVD reactor (Daeki Hi-Tech Co, Ltd.) with the va-
porized monomers and initiator. V3D3 (95%, Gelest, USA) and VI (99%,
Aldrich, USA) were used as the monomers, and tert-butyl peroxide (TBPO,
98%, Aldrich, USA) was used as the initiator.

Device Fabrication: The hybrid memristors were fabricated with a-
IGZO transistors on a thermal grown 90 nm SiO, substrate. Thermal evap-
oration and lift-off process were used for the Au (50 nm)/Cr (5 nm) of
source, drain and gate electrode. 30 nm thick a-IGZO channel was de-
posited through RF sputtering, and was patterned with wet-etch process.
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Figure 5. Edge detection demonstration. a) A real-world 160 x 160 image for edge detection. Color map represent the pixel intensity. b) Four represen-
tative 10 X 10 patches. ¢) Summation current outputs for the lateral filter (left) and the vertical filter (right) during the convolution operation. d) Output
voltages of mReLU neuron fed from the lateral filter (left) and the vertical filter (right). e) Output voltage of the mReLU neuron for the whole image

during the convolution for the lateral filter (left) and the vertical filter (right).

Thermal ALD grown 30 nm thick Al,O5 layer was used as gate dielectric.
Active layer of the memristor was patterned on the gate dielectric with wet
etch process. 3 nm thick ALD grown Al,O5 layer and 15 nm thick p(V3D3-
co-VI) film deposited with iCVD process were used as memristor switching
dielectric. For the top active electrode, 50 nm thick Cu film was deposited
with thermal evaporation, and was patterned with wet-etch process.

Device Characterization: ~ Keithley 4200 semiconductor parameter ana-
lyzer was used to investigate the electric characteristics of the fabricated
devices. Electrical measurements were performed under ambient air con-
dition at room temperature. Keithley 4200 and Keithley 4225-PMU (pulse
generator), and 4225-RPM (remote amplifier/switch) were used to per-
form DC sweep measurements and voltage pulse measurement, respec-
tively. A cross-sectional TEM sample was prepared using a focused ion
beam (FIB, FEI Helios Nano Lab 450 HP). STEM images were obtained
using a JEOL ARM 200F instrument at an accelerating voltage of 200 kV
and a FEI Titan G? 60-300 with a dual spherical aberration Cs-corrector
at an accelerating voltage of 300 kV. EELS spectra were obtained using a
Gatan Imaging Filter.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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