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sensors should have enough sensitivity 
to detect the speech signal at least 60  dB 
over voice frequency range. The frequency 
domain signals are converted by using 
fast Fourier transform and short time 
Fourier transform. The converted signals 
are used to provide the training and test 
data for speech recognition software. The 
optimized machine learning algorithms 
are necessary to improve the speech 
recognition under the noise condition by 
filtering the surrounding sound such as 
typing, clock tick, car horn, and engine.

The condenser type microphones is 
widely commercialized acoustic sensor to 
detect sound signal by using the difference 

of capacitance between two conducting diaphragms.[61,67,69,75–81] 
This capacitive sensors belong to the nonresonance type that 
exhibits the flat frequency response. The uniform sensitivity 
over voice frequency range enables the easy processing of speech 
recognition with single channel. However, the condenser-type 
sensor has demerits such as insufficient sensitivity, limited rec-
ognition distance, high power consumption and the unstable 
circuit of large amplification.[3,82–87] The piezoresistive sensor 
detects the sound by sensing the resistance change depending 
on the movement of membrane.[88] Similar to capacitive micro-
phone, the piezoresistive sensors should be powered to detect the 
sound, which requires high power consumption.[89] Furthermore, 
the noise signal can be generated at high temperature condi-
tion, since parameters of piezoresistance are dependent on tem-
perature.[90,91] The triboelectric acoustic sensors detect the voice 
signal, utilizing the generated electrostatic charges of membrane 
by sound pressure.[51,53] This type is self-powered operation, like 
piezoelectric acoustic sensor, converting mechanical deformation 
into electrical potential. The electrostatic charges can be severely 
affected by humidity and temperature, due to the nature elec-
trostatic phenomenon.[92–95] As one of the piezoelectric type, the 
surface acoustic wave (SAW) sensors consist of two bulky piezo-
electric materials based rigid transducers to respond to high fre-
quency signals above MHz.[96,97] In addition, the delay between 
the transmitted and received signal can restrict the real-time 
sensing. Therefore, properties of SAW sensors are not appro-
priate for frequency range of speech recognition.[98]

Recently, flexible piezoelectric acoustic sensors, mimicking 
the basilar membrane of human cochlear,[3,67,99–103] are spot-
lighted as a promising candidate for improving the sensitivity 
and recognition rate. The self-powered flexible acoustic sensor 
exhibits higher sensitivity at human utterance compared to 

Flexible piezoelectric acoustic sensors have been developed to generate 
multiple sound signals with high sensitivity, shifting the paradigm of future 
voice technologies. Speech recognition based on advanced acoustic sensors 
and optimized machine learning software will play an innovative interface 
for artificial intelligence (AI) services. Collaboration and novel approaches 
between both smart sensors and speech algorithms should be attempted 
to realize a hyperconnected society, which can offer personalized services 
such as biometric authentication, AI secretaries, and home appliances. Here, 
representative developments in speech recognition are reviewed in terms 
of flexible piezoelectric materials, self-powered sensors, machine learning 
algorithms, and speaker recognition.
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1. Introduction

The most intuitive human–machine interface is speech 
recognition,[1–8] which can replace conventional touch-based 
devices for hyper-connected society.[9–15] In addition, voice user 
interface (VUI) has attracted significant attention as the core 
technology of internet of things (IoT) artificial intelligence (AI) 
due to its exceptionally convenient and bilateral communica-
tion.[3,16–28] Smart acoustic sensors can be applied to speaker 
recognition, biometrics, personalized AI secretary, and smart 
home appliances.[29–45]

Speech recognition system involves two main parts: i) acoustic 
hardware sensors,[46–54] ii) speech recognition software.[55–60] 
Acoustic sensor detects sound pressure of human utterance and 
coverts original analog speech sound into electrical data.[61–68]  
The general speech signals have 60  dB of magnitude over 
audible frequency range (20  Hz to 20  kHz).[69,70] The most of 
voice energy is distributed in frequency range of 100–4000 Hz, 
which includes the surrounding noises.[71–74] The acoustic 
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the capacitive and piezoresistive sensor, because the device is 
fabricated considering the material and mechanical design 
for superior piezoelectric coefficient and multiple resonant 
vibrations, respectively. The flexible acoustic sensors of highly 
sensitive piezoelectric membrane can consistently exhibit high 
sensitivity without degradation over humidity and heat, due to 
the durability of inorganic thin film materials. The thickness 
and shape of piezoelectric membrane should be considered 
to design resonance frequencies. Thin membrane can inten-
sively vibrate at low voice frequencies, while thick membrane 
respond to high frequency. The flexible trapezoidal shape of 
piezoelectric membrane can generate the exceptional resonant  
vibration according to voice frequency band, which can detect 
minute sound under the 60 dB from far distance, compared to 
other type microphones.[3,66,67,104,105] The flexible piezoelectric 
membrane can produce multiple data set of frequency compo-
nents depending on channel width, due to more than twice IDE 
channels. Multichannel signals can obtain more than twice voice 
information for speech processing, like the mechanism of human 
cochlear with more than 10 000 outer hair cells. Since the piezo-
electric acoustic sensors acquire abundant speech information 
from multichannel signals, it has advantages of machine learning 
training based on the sufficient data, and useful signal selec-
tion from multichannel input. By adopting optimized machine 
learning algorithms with weighted value, the intentional selec-
tion of discrete information can filter noise signal and enhance 
speech recognition. The flexible piezoelectric acoustic sensors 
were proven to exhibit 97.5% accuracy for speaker recognition, 
due to high sensitivity of –76 dB under white noise condition, 
and abundant data set of seven channels.[3] Table 1 shows the 
main characteristics in different acoustic sensor types.

Speech recognition processing transforms the voice infor-
mation into a binary digital format for input data of machine 
learning algorithms.[55,106–108] Researches of speech processing 
have been developed from the perspectives of collection, 
manipulation, and storage of the incoming voice data.[109–114] 
For decades, the classical machine learning based algorithms 
such as Gaussian mixture models (GMMs), hidden Markov 
models (HMMs), and support vector machine (SVM) have been 
used widely for speech processing. Recent advances in deep 
learning have significantly improved the performance of speech 
processing tasks, surpassing the performance of classical 
machine learning algorithms. However, these technologies 
have still suffered from a low recognition rate due to hardware 
issue of low sensitivity and limited voice information.[115–117] 
Future voice technologies should be focused on synergistic 
collaboration between smart acoustic sensor and AI algorithm 
to overcome the fundamental weakness of speech recognition.

Here, we introduce brief overview of flexible piezoelectric 
acoustic sensors and speech processing. In particular, we 
concentrate on recent progress in bioinspired and self-powered 
inorganic acoustic sensors, and machine learning algorithms 
for speaker recognition. This review is classified into five main 
categories: i) Piezoelectric effect and materials, ii) self-powered 
flexible sensors, iii) flexible piezoelectric acoustic sensors, 
iv) machine learning algorithms for speech processing, and 
v) speaker recognition. Figure  1 illustrates machine learning 
based flexible piezoelectric acoustic sensor and its applications 
as voice user interface platform.
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2. Piezoelectric Effect and Materials

Piezoelectric effect that produces electric charge by the 
deformation is the well-established technology for gener-
ating electricity from tiny mechanical force.[118–122] In addi-
tion, the electrical output signals can be utilized to detect the 
motions for sensing the physical or chemical reactions.[123–127] 
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Figure 2a-i,ii shows wurtzite and perovskite-structured crystals 
of piezoelectric materials. Under mechanical strain on these 
piezoelectric crystals, the displacement of positive and nega-
tive electric charge leads to an electric polarization inside the 
piezoelectric structures.[118–120,128] The created net charges (Q) 
can be expressed by Q = A · E · S · dij, where A is the surface 
area of crystals, E is the elastic modulus, S is the strain, and dij 
is the piezoelectric charge coefficient; i and j denotes the polari-
zation and strain direction of 3D coordinate system, respec-
tively.[128–131] The interdigitated electrodes (IDEs) based device 
is d33 mode case, while d31 is applied in generator with metal–
insulator–metal (MIM) structure. The piezoelectric properties 
can vary depending on materials as well as the structure. By 
utilizing the vapor–liquid–solid method, deposition process or 
molecular beam epitaxy, wurtzite piezoelectric materials such 
as ZnO and ZnS can be easily synthesized in different struc-
tures of nanowires (NWs), nanotubes, and films for energy 
conversion, piezotronics and piezophotonic devices; however, 
their applications are limited due to low piezoelectricity.[126–145] 
The piezoelectric materials of perovskite structure such as PZT 
and PMN-PT have been widely commercialized for energy 
generators, actuators and sensors, due to excellent d33 piezo-
electric properties.[128–130,146–149]

Flexible piezoelectric harvesters on plastics have attracted 
enormous interest since they can generate electrical energy 
not only by vertical pressures but also by tiny bending 

including wind, sound, and biomechanical movements.[150–153] 
Yang et al.[133] fabricated parallel ZnO NW on a flexible substrate 
for piezoelectric nanogenerators to overcome disadvantages of 
vertical NWs.[138,139] As shown in Figure  2b, the piezoelectric 
NWs were laterally aligned on plastics to increase output voltage 
and mechanical robustness. The stable condition was preserved 
at 22 stretching/releasing cycles per minute for 45 min, due to 
the package of insulating flexible film. Deformation-induced 
displacement of electric charges in wurtzite crystal, producing 
electrical piezoelectric potential distributions to charge the wire. 
While the bending motions induced the piezoelectric potential 
to charge the wire, the releasing motions caused electrons to 
flow back in the opposite direction. This procedure generated 
positive and negative open-circuit voltage of 20 and –50  mV, 
respectively, according to periodic bending and releasing with a 
strain of 0.05–0.1%. In addition, the series connection of later-
ally aligned ZnO wires enhanced the open-circuit voltage.

Park et  al.[150] reported the flexible BaTiO3 energy harvester 
by transferring high temperature annealed perovskite piezo-
electric thin films onto a plastic substrate via soft lithographic 
printing method. The fabrication process was conducted by 
three main steps: i) sol–gel coating and high temperature 
crystallization of lead-free BaTiO3 on Pt/Si sacrificial substrate, 
ii) formation of the freestanding MIM piezoelectric layer by 
removing the mother substrate, and iii) transfer of the MIM 
structures. Figure 2c displays the fabricated flexible BaTiO3 thin 
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Figure 1.  Schematic illustration of the promising applications of voice user interface platform. Flexible piezoelectric acoustic sensors covert utterance 
to electrical multi signals by vibrating in response to the speaker’s voice, which can provide digitalized data for preprocessing. The data are trained 
using machine learning-based model and language information is extracted from the speech. This process will support the evolution from touch to 
sound-operated electronics system.

Table 1.  Summary of main characteristics in different acoustic sensor types.

Capacitive/MEMS type Piezoresistive type Triboelectric type Piezoelectric type

Measurement type Capacitance Voltage (Resistance) Voltage Voltage

External power Required Required Self-powered Self-powered

Device type Nonresonance Resonance Resonance Resonance

Sensitivity (open circuit) Low Low High High

Data sets Single signal Single signal Single/multisignal Multisignal

Frequency response Flat Sharp peak Sharp peaks Tunable for voice frequency band
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film nanogenerator to measure the electrical output properties. 
A magnified optical image shows that IDEs were connected 
with the MIM structure. The bent BaTiO3 thin film produced 
output voltage between neighboring electrodes by creating 
electrical charges in the MIM structure. The poling process  
aligned randomly distributed charge dipoles in one direction by 
applying high electric fields of 100 kV cm−1 at high tempera-
ture of 140  °C.[154–156] After the piezoelectric coefficient of d33 
increased to 105 pC N−1 by the poling process, the self-powered 
flexible BaTiO3 generator exhibited short-circuit current of 
12  nA and open-circuit voltage of 0.35 V at maximum strain 
of 0.55%. This work was significant because flexible perovskite 
piezoelectric thin film was successfully demonstrated on plastic 
substrates by adopting high temperature annealing process 
before transfer.

Single-crystalline thin films with exceptionally high piezo-
electric properties improved the capability of MIM-based 
flexible energy devices for converting mechanical strain into 
electrical signal.[157,158] Hwang et  al.[129] demonstrated flex-
ible single crystalline PMN-PT piezoelectric nanogenerator to 
directly stimulate a heart of a living rat without any external 

power sources. Figure  2d presents the schematic of experi-
mental procedures to fabricate a self-powered pacemaker. The 
detailed fabrication procedures are as follows: i) single crystal 
structure of PMN-PT ingot was grown from melt near the mor-
photropic phase boundary (MPB). The piezoelectric charge 
constant can be obtained up to 2500 pC N-1 at the composi-
tion of MPB.[159–162] The electrode deposited PMN-PT plate 
was thinned to a layer of 8  µm, and poled along the[98] direc-
tion after deposition of Au top electrode. ii) the piezoelectric 
thin film was peeled off from the mother substrate by utilizing 
electroplated thick Ni film stressor. Due to the directional stress 
mismatch between Ni layer and MIM piezoelectric thin film, 
uniform and spontaneous exfoliation was achieved without any 
wrinkling and cracking on active device materials. iii) piezo-
electric PMN-PT film was transferred on PET substrates with 
UV-cured polyurethane, providing sufficient flexibility to 
respond slight bending motions. The piezoelectric pacemaker 
generator responded to the minute movement of flexible sub-
strates and subsequently generated high output. The output 
voltage and current of flexible PMN-PT nanogenerator were 
measured up to 8.2 V and 145 µA, respectively, upon periodic 
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Figure 2.  a) Atomic structures: i) a wurtzite structure and ii) a perovskite structure. a) Reproduced with permission.[128] Copyright 2014, Royal Society 
of Chemistry. b) Design of a piezoelectric single-wire generator on a flexible substrate and two generators connected in series. Reproduced with 
permission.[133] Copyright 2009, Springer Nature. c) A flexible BaTiO3 nanogerator supported on a plastic substrate with the copper wires connected. 
Reproduced with permission.[150] Copyright 2011, American Chemical Society. d) Schematic illustration of the fabrication procedure and biomedical 
application of flexible PMN-PT piezoelectric harvester. Reproduced with permission.[129] Copyright 2014, Wiley-VCH. e) Depiction of transfer process 
for flexible PZT thin film via LLO method. Reproduced with permission.[147] Copyright 2014, Wiley-VCH. f) The simulation of piezopotential distribution 
inside the PZT thick film for IDE-type device. Reproduced with permission.[149] Copyright 2016, Wiley-VCH.
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bending and releasing motions with 0.62% strain. The stability 
test showed mechanical durability without degradation during 
30 000 bending/releasing cycles.

The electrode structures have been modified and opti-
mized to enhance output voltage depending on current and 
voltage driven applications. While MIM energy harvesters 
can generate high current, IDE-based piezoelectric nano-
generator can produce sufficient output voltage.[129,149] Park 
et  al.[147] demonstrated highly efficient IDE type piezoelectric 
harvester on plastic substrates using inorganic-based laser 
lift-off (ILLO) technique as illustrated in Figure  2e. The PZT 
thin film was separated from mother substrates by irradiating 
XeCl excimer laser on the transparent sapphire wafer. Epoxy 
was coated to protect the thin film nanogenerator after IDEs 
were deposited on the flexible PZT membrane. The commonly 
used equation of piezoelectric output voltage can be described 
by V3j  =  σxx g3jLj, where σxx is mechanical stress, g3j is the 
piezoelectric voltage constant (g3j  = d3j/εT, εT is the permit-
tivity), and Lj is the distance between electrodes. The IDE-type 
self-powered generator operates in d33 mode, which can have 
L3 longer than a few hundred micrometers. The piezoelectric 
voltage constant of g33 is usually twice larger than g31 constant. 
Therefore, high open-circuit voltage of 200  V was achieved at 
bending radius of 1.61  cm (corresponding to tensile strain of 
0.386%) from the 100 µm gap across the electrodes of flexible 
PZT device. This is one of the highest output voltage among 
flexible piezoelectric materials compared to a few volts of pre-
vious researches.[127,129,148] After 10 000 bending iterations with 
strain of 0.153% to 0.386%, the peak voltage values were main-
tained without physical cracks. This work showed that output 
voltage can be generated by slight vibration such as pulse, wind 
and voice.

Hwang et  al.[149] developed flexible PZT nanogenertaor by 
utilizing the aerosol deposition (AD) method. The AD process 
can provide instantaneously deposited piezoelectric thick 
films with high quality. The piezoelectric coefficient of the 
films increases with the thickness, however, the layers cannot 
efficiently respond to the vibration due to the lack of flexibility. 
After optimization of trade-off between piezoelectric coefficient 
and flexibility, 7  µm thick AD PZT film of one-step deposi-
tion enabled high output voltage compared to multiple process 
of sol–gel coating and annealing. The efficient performance 
was attributed to high piezoelectric coefficient d33 and g33 of 
406 pC N-1 and 49.5 mV m N-1, respectively. Figure 2f depicts 
the simulation model of the flexible piezoelectric energy har-
vester. The simple model assumed that piezoelectric film was 
deformed under bending radius of 21 mm, which elongated PET 
substrates with a displacement (ΔX) of 150 µm. The maximum 
piezopotential difference (ΔV) based on finite-element analysis 
(FEA) was calculated to 370 V, that matched with measured 
high open-circuit voltage of 200  V at bending motions by fin-
gers. The output voltage remained stably constant during 
115 000 bending/releasing cycles at 0.3% strain.

3. Self-Powered Flexible Sensors

Flexible piezoelectric sensors have the advantage of self-powered 
operation without the external energy supply.[3,62–68,123–127] 

Self-powered sensor is an important technology for the future 
IoT era of always-on condition because human cannot manage 
the energy issue of millions of sensors.[149,163–165] Lin et  al.[166] 
integrated piezoelectric nanogenerator with the mechanical  
component of weight measurement by growing the textured 
ZnO NW film on the elastic spring. Figure  3a–i depicts the 
structure of the spring-substrated nanogenerator (SNG). 
The fabricated device was composed of Ag electrode, metal 
spring, and ZnO NWs passivated with PMMA as a buffer 
layer. The weight measurement mode of the self-powered 
SNG is described in Figure  3a-ii. The tiny plates were placed 
on the active sensor to load the heavy object, producing the 
piezopotential across the ZnO layer. Figure 3a-iii shows linear 
relationship between the loading weight and electrical outputs. 
The piezoelectric sensor produced output voltage of 0.23  V 
by applying 15.2 N. The output decayed by only 3–4% after 
continuous 80 000 working cycles. The equivalent weight of 
the object was calculated with the output current and voltage, 
exhibiting the sensitivity of 2.8 nA kg−1 and 45 mV kg−1, respec-
tively. Furthermore, this research validated the effectiveness 
of the SNG self-powered sensor by varying displacements and 
vibration condition. The spring of 50 mm was deformed up to 
35 mm, showing the sensitivity of 7 mV mm−1. The oscillated 
output current was induced by free vibration, which indicated 
the availability of the SNG as vibration sensor.

In addition, flexible piezoelectric self-powered sensors 
have been applied to detect chemical substances.[127,167,168] 
Niu et al.[169] improved the oxygen sensor device based on ZnO 
piezotronic effect. Figure 3b-i illustrates the experimental setup 
and developed piezoelectric oxygen sensor on flexible sub-
strates. The ZnO NW was transferred onto plastic substrates to 
form the metal–semiconductor–metal structure by fixing both 
ends with silver paste. After the piezoelectric chemical sensor 
was attached on the bracket inside gas chamber, positioner was 
moved to induce the strain in substrates. Figure  3b-ii shows 
the performance of oxygen sensor with the current under the 
bias of 1 V. As the oxygen pressure rose from 16 to 700  Torr, 
the current dropped from 899 to 401 nA, due to the oxygen 
adsorption. Tensile strain improved the sensitivity in terms of 
the relative current change. The relative current change was 
enhanced from -55.4% to -75.4% as the strain rose from 0% 
to 0.2%, due to the potential distribution inside ZnO NW. 
Figure 3b-iii illustrates the simple mechanism of enhanced sen-
sitivity of self-powered oxygen chemical sensor. When tensile 
strain created the negative piezopotential across the ZnO NW, 
Schottky barrier height increased. Therefore, the movements 
of electrons responding to oxygen pressure were restricted, 
and sensitivity of relative current variation was enhanced. This 
improved detection efficiency at 0.2% strain indicated that 
minute movement can be appropriate input for flexible piezo-
electric sensor.

The real-time biomedical information can be also monitored 
using self-powered piezoelectric sensors attached on rugged 
human skin. Park et al.[170] fabricated a self-powered health-care 
sensor to detect blood vessel movements in situ. As shown in 
Figure  3c-i,iii, the piezoelectric PZT thin film was transferred 
onto an ultrathin flexible substrate via ILLO method, allowing 
the conformal contact on the epidermis to monitor the bio-
mechanical vibrations by human pulse. Characteristics of 
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the self-powered health-care sensor, such as the sensitivity to 
external pressure, the response to the audible frequency and 
the durability against mechanical damage, were examined 
before direct pulse detection. The exerted pressure of 25  kPa  
produced the output voltage of 1.85  V, exhibiting the pres-
sure sensitivity of 0.018 kPa−1. The peak-to-peak voltage (Vpp) 
of 100  mV was generated from the 240  Hz sound of 80  dB. 
The dynamic pushing test verified the stable operation of the 
sensor during 5000 cycles under the pressure of 20  kPa. The 
flexible piezoelectric pulse sensor was successfully adhered on 
a human wrist by biocompatible liquid bandage. The inset is 
the optical image of the stably deformed pulse sensor that effec-
tively responded to tiny movement of radial artery. Figure 3c-ii 

shows the real-time pulse of a healthy male before (red line) and 
after (blue line) physical exercise. The self-powered pulse sensor 
exhibited the averaged output Vpp of 65 mV before exercise and 
81.5  mV after exercise, respectively. The result indicated that 
the rate of heartbeats increased to supply the consistent amount 
of oxygen to muscles. The enlarged radial arterial signal (inset) 
represents the characteristic artery waveforms with important 
physiological information including myocardial infarction and 
artery disease. Flexible piezoelectric sensor was also attached on 
a human neck to obtain biomedical data, such as carotid artery 
pulse and muscle movements. Figure 3c-iv presents the gener-
ated voltage Vpp of 400 mV and 1000 mV from the carotid arterial 
pressure and saliva swallowing actions, respectively.

Adv. Mater. 2020, 32, 1904020

Figure 3.  a-i) Schematic structure of nanogenerator based on ZnO nanowires grown on the surface of the elastic wire. ii) The working mechanism of the 
self-powered sensor for weight measurement. iii) Linear relationship between the electrical output and loaded weight on the nanogenerator. a) Reproduced 
with permission.[166] Copyright 2013, Royal Society of Chemistry. b-i) Schematic of the experiment setup for analyzing the piezotronic effect in a ZnO 
NW oxygen sensor. ii) 3D graph showing the output current of the ZnO NW-based oxygen sensor under different strains and oxygen pressures at a bias  
of 1 V. iii) Simplified structures of ZnO NW oxygen sensor under vacuum with no strain, only in an oxygen atmosphere, and in both oxygen atmosphere 
and with tensile strain. b) Reproduced with permission.[169] Copyright 2013, Wiley-VCH. c-i) Optical image of a self-powered pulse sensor conformally 
contacted on wrist utilizing a biocompatible liquid bandage. The inset shows the deformed device due to blood vessel movement. ii) Radial artery pulse 
detected by the piezoelectric pulse sensor, showing different output voltages in response to heart rates before and after physical exercise. The inset 
represents the magnified voltage by the radial artery pulse before exercise, clearly indicating pulse pressure (P1) and late systolic augmentation (P2).  
iii) Photograph of self-powered pulse sensor conformally attached on a carotid artery spot (top) and the middle of the throat (bottom). iv) The 
generated piezoelectric voltage according to carotid arterial pressure (top) and saliva swallowing actions (bottom). c) Reproduced with permission.[170] 
Copyright 2017, Wiley-VCH. d-i) Schematic depiction of pressure sensor matrix (PSM) devices. ii) Integral intensity over 525–685 nm under different 
pressures. iii) PSM devices showing the recorded signing habits of four signees. d) Reproduced with permission.[173] Copyright 2015, Wiley-VCH.
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Some researchers have attempted to utilize flexible 
piezoelectric sensors as human-machine interface.[171,172] 
Wang et al.[173] developed flexible self-powered pressure sensor 
matrix (PSM) to record the signature and signing habits by 
employing piezophotonic effect of ZnS:Mn particles (ZMPs). 
Figure 3d-i illustrates the sandwiched PSM device composed of 
two polymeric substrates and middle layer of ZMPs. Ethylene-
vinyl acetate copolymer (EVA), bonding ZMPs on transparent 
PET films, protected the photon emitting layer and transmitted 
the light. The emitted light intensity increased as the loaded 
force changed from 0.8 to 10  N. Figure  3d-ii shows the inte-
gral light intensity depending on pressures. The self-powered 
sensors exhibited linearly increasing light intensity with sensi-
tivity of 2.2 cps kPa−1 over the range of 10–50 MPa. After pres-
sures generated the piezopotential within ZnS, nonradioactive 
recombination occurred to excite the electrons of Mn2 + ion. 
The yellow visible light was emitted when the electrons fell 
back to the original state. The intensity was stably preserved 
while periodic pressure of 15  MPa was applied for 10 000 
cycles. Figure 3d-iii illustrates the securer signature collecting 
system demonstrated with flexible PSM device. Signatures 
“piezo” were handwritten by four different signees, showing 
obvious differences in writing habits. The ZMP-based PSM 
device enabled the precise mapping for planar pressure distri-
butions, which can be further applied in identity verification.

4. Flexible Piezoelectric Acoustic Sensors

4.1. Flexible Organic Piezoelectric Acoustic Devices

Shintaku et  al.[62] developed multichannel flexible PVDF film 
acoustic sensor with selective frequency response. Figure  4a 
displays that the electrodes deposited PVDF layer was bonded 
on a substrate with trapezoidal hole to mimic the passive 
basilar membrane. The width of film varied along the longitu-
dinal direction, changing resonant frequencies according to the 
position. The electrodes were named from Ch. 1 to Ch. 24 as 
the width increased. Self-powered piezoelectric acoustic device 
was adhered on the stainless substrate filled with silicone oil 
to model an in vivo environment. Figure 4b shows the experi-
mental data of vibrational motion (solid line) and output voltage 
(broken line). The peaks of both amplitudes corresponded to 
each other, showing identical frequency dependence. The reso-
nant frequencies were measured as 3.64, 2.32, and 1.88 kHz at 
Ch. 6, Ch.12, and Ch.18, respectively. The output voltage was 
not sensitive to detect minute sound under 60 dB, although the 
polymer piezoelectric acoustic sensor exhibited the selective 
response to frequencies.

Park et al.[63] demonstrated flexible self-powered MIM struc-
tured PVDF acoustic sensor by depositing top and bottom 
metal electrodes on the surface of the piezoelectric thin film. 
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Figure 4.  a) Structure of PVDF-based piezoelectric acoustic sensor. b) Resultant vibration amplitude and output voltage from Ch. 6, Ch. 12, and Ch. 18 in 
silicone oil of 1.75 × 10−3 Pa s. a,b) Reproduced with permission.[62] Copyright 2010, Elsevier. c) Schematic of acoustic device with electrodes patterned on 
top and bottom surface of PVDF film. d) Plot of expected sensitivity (V Pa-1) of PVDF sensors with different active areas (40, 20, 10, and 1 mm2), when 
amplified with a PARC amplifier with a gain of 1000. e) Output voltage of PVDF device according to different sound pressure. f) Photograph of the PVDF 
sensor encapsulated in PDMS cylinder. g) The sensitivity of PVDF acoustic device inside an air pressure chamber. Sound pressure was delivered at two levels, 
80 and 100 dB SPL. Inset shows air pressure chamber. c–g) Reproduced with permission.[63] Copyright 2018, SAGE Publications Inc. h) The mechanism 
of piezoelectric conversion for the nanofiber acoustic sensors. i) Voltage outputs as a function of sound frequency. h,i) Reproduced under the terms of the 
Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/).[64] Copyright 2016, Springer Nature.
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Figure  4c illustrates the developed structure with electrode-
overlapped area where the surface charges were created to 
generate the piezoelectric voltage. The width was longer than 
100 µm to prevent fracture and open-circuit between electrodes. 
An amplifier (gain of 1000) was connected to the piezoelectric 
PVDF acoustic device to enhance the output voltage. The input 
voltage to the amplifier (VIN) is expressed as following equation:
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VPVDF is the PVDF-generated voltage. ZO.PVDF and ZI.AMP are 
the impedance of the acoustic sensor, and amplifier, respec-
tively. Figure  4d shows the calculated sensitivity for different 
active areas. The expected output voltage increased as the 
active areas got larger from 1 to 40 mm2, due to the decrease in 
impedance of the piezoelectric PVDF acoustic sensor. However, 
the sensitivity was lowered by saturated ZI.AMP as the frequency 
decreased. Figure  4e displays the measured voltage at each 
sound pressure level by taking the average output over the 
frequency range between 10 and 20 kHz. The piezoelectric sen-
sors exhibited the sensitivity of 45, 43, 21, and 6 Pa−1 for active 
areas of 40, 20, 10, and 1 mm2, respectively. To further prevent 
the shorting of electrodes in the fluid, the flexible piezoelectric 
acoustic sensor was encapsulated with an insulating material 
as shown in Figure 4f. The entire area of PVDF (the width of 
0.5 mm and the length of 15 mm) was covered with metal elec-
trodes to maximize the output voltage. The injection molding 
process was performed to last a lifetime of this piezoelectric 
acoustic device by using PDMS cylinder with a diameter 
of 0.6  mm. Figure  4g presents the sensitivity of the flexible 
acoustic sensor inserted into air pressure chamber. The PDMS-
encapsulated self-powered sensor was stimulated by the sound 
in the range of 1–60 kHz at 80 and 100 dB SPL (decibel sound 
pressure level). The responsive voltage showed many peaks and 
valleys, due to the resonance of the PDMS tube.

Piezoelectric polymer acoustic devices have required the 
complex circuits to compensate the relatively low sensi-
tivity.[63] Lang et  al.[64] demonstrated the highly sensitive flex-
ible piezoelectric nanofiber acoustic sensors by electrospinning 
the PVDF polymer. Figure 4h illustrates the structure and the 
mechanism of the piezoelectric sound sensing device. The 
electrospun piezoelectric nanofiber layer was contacted on the 
surface of electrode-coated PET films. The transparent plastic 
substrate was cut to create the circular hole where sensor 
directly received the acoustic waves. When the sound hits the 
acoustic sensor, the sound absorption caused the vibration of 
nanofiber web and PET sheets. The exposed through hole area 
vibrated more intensively in the in-plane (V1) and cross-plane 
directions (V2) compared to plastic film-covered nanofibers. 
While the cross-plane vibrations generated the piezoelectric 
charge, in-plane vibrations induced wave propagation through 
the whole device. This asymmetric vibration improved the 
sensitivity. Flexible PVDF acoustic sensor exhibited peak 
output voltage at 220 Hz as plotted in Figure 4i. The measured 
voltage fluctuated to nearly zero over the frequency range of 
400–1500  Hz, after the voltage showed the abrupt decrease 
above 220  Hz. Although the piezoelectric acoustic sensor 

exhibited intrinsically high output voltage without amplifica-
tion, the limited frequency coverage is insufficient to extract 
the human voice information.

4.2. Flexible Inorganic Piezoelectric Acoustic sensors

Inorganic-based flexible piezoelectric acoustic sensors have been 
spotlighted as a promising candidate for enhancing sensitivity 
and speech recognition, due to its superior inherent piezo-
electric properties.[174] Jang et  al.[65] developed a piezoelectric 
artificial basilar membrane (ABM) to detect sound with selec-
tive frequencies by mimicking the tonotopy of the cochlear. 
Figure 5a shows the piezoelectric aluminum nitride (AlN) can-
tilever array consisted of eight channels with different length 
from 600 to 1350 µm. The piezoelectric acoustic sensor detected 
each resonance frequency depending on its beam dimensions. 
Figure  5b describes the vibration pattern and displacement of 
piezoelectric acoustic cantilever unit at resonance frequency 
collected by the laser Doppler vibrometer (LDV), indicating the 
constrained oscillation of beam structure. The inset demon-
strates that the resonance frequency, piezoelectric output, and 
displacement increased with inversely proportional relation 
to the cantilever length when the channel number decreased. 
Figure 5c represents the frequency response of each cantilever 
channel, exhibiting high quality factor (Q-factor) at resonance 
frequencies and thus discrete piezoelectric voltage signal over 
audible frequency range. The piezoelectric AlN acoustic sensor 
showed 0.354–1.22 mV Pa-1 of sensitivity in response to sound 
of the frequency range from 2.92 to 12.6 kHz.

Lee et al.[66] demonstrated an inorganic piezoelectric acoustic 
nanosensor (iPANS) by transferring PZT thin film onto trap-
ezoidal silicone-based membrane (SM) to mimic biomimetic 
basilar membrane (BM). The conceptual image for organ of 
Corti and flexible piezoelectric acoustic sensor is described as 
shown in the Figure 5d, representing that the iPANS as artifi-
cial hair cells could produce piezoelectric potential by minute 
sound wave. The three iPANS were adhered on different 
location of an artificial trapezoidal silicone BM to accomplish 
a similar mechanism of the hair cells. Figure  5e provides 
an optical image of the SM with iPANS array attached at 
the apex, intermediate, and base region, respectively. While 
low frequency acoustic signal vibrates SM at the apex, high 
frequency sound induces the resonance in the base region. As 
presented in Figure  5f, the vibrational motion of the artificial 
BM (red plot) with short width corresponded to piezoelectric 
output voltage of the iPANS (blue plot) placed on the base. The 
flexible PZT thin film converted the vibration displacement 
(7.6  nm) into piezoelectric voltage (59.7 µV) at the resonance 
frequency of 1000  Hz. Furthermore, other iPANS array at 
apex and intermediate regions also successfully distinguished 
the low and middle frequency of 500 and 600  Hz within the 
targeted voice frequency range, respectively.

Han et  al.[67] reported a multichannel flexible piezoelectric 
acoustic sensor (f-PAS) with outstanding sensitivity and the 
tunable multifrequency band by mimicking the curved BM 
structure. Multiple sensing channels were integrated on the 
piezoelectric PZT thin film to respond to tiny vibration over 
the voice frequency band. The experiments were performed 
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to measure the performance of self-powered f-PAS attached 
on the printed circuit board (PCB) with a curvilinear shape 
hole as shown in Figure  5g. The sensor characteristics of 
voltage signals from the resonance of multichannels covered 
the entire voice frequency band from 100 to 4000  Hz with 
high sensitivity. FEA simulation was conducted to analysis the 
multiresonance in the curved f-PAS, which showed sound wave 
propagation similar in the BM of the cochlea. The first, second, 
and third mode of the resonance were sequentially generated at 
the region of base, intermediate, and apex areas in membrane, 
corresponding to resonance frequency of the 650, 1080, and 
1440  Hz, respectively. The frequency of each resonant mode 
was selectively detected by multichannel where the oscillatory 
motion occurred. The resonance frequency of the flexible piezo-
electric membrane is described as following equation

ω
π ρ

= =
2 2

f C
t

l

E
r � (2)

ω are angular frequency of the trapezoidal membrane. C, t, E, l, 
and ρ indicate the capacitance, thickness, Young’s modulus, width, 

and density of the film, respectively. Figure 5h represents the line-
arly increasing resonant frequencies of the multichannel acoustic 
sensor, obtained from the quadratic decrease of the width length 
in the curvilinear membrane. Figure 5i illustrates the relative sen-
sitivity of reference microphone and the f-PAS in the frequency 
range of 100–4000 Hz. By taking the maximum voltage signals 
among seven channels, the tunable multiresonant frequency 
band was achieved, which showed 32 times higher sensitivity (30 
decibels difference) at 650 Hz compared to a condenser type ref-
erence microphone. Table 2 presents the performance and chal-
lenge of the flexible piezoelectric acoustic sensors in Section 4.

5. Machine Learning Algorithms for Speech 
Processing

Machine learning (ML) is the algorithms and statistical models 
that help the computer to perform specific tasks without explicit 
instructions.[175–177] In machine learning, data is often split into 
training, validation and test data. Given a training set with N 
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Figure 5.  a) Optical image of the fabricated ABM with eight cantilevers by using aluminum nitride (AlN) as the active piezoelectric layer of MIM structure. 
b) A deformed cantilever by the resonant vibration utilizing a scanning laser Doppler vibrometer. c) Piezoelectric outputs for all cantilevers of an ABM. a–c) 
Reproduced under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/).[65] Copyright 
2016, Springer Nature. d) Conceptual illustration of organ of Corti in mammalian cochlea. The PZT film bent upwards generated piezopotential of ≈3 V 
when a tensile stress applied parallel to the surface of PZT film. e) Optical image of the frequency separator with iPANS. The inset shows a single iPANS 
unit conformally attached on cylinder. f) A vibration displacement and a piezoelectric signal generated by c-iPANS in the frequency range of 100–1600 Hz. 
A distribution of the vibration displacement and the piezoelectric signal were closely overlapped all over the frequency bandwidth. d–f) Reproduced with 
permission.[66] Copyright 2014, Wiley-VCH. g) A photograph of the multichannel f-PAS fixed on a PCB with a curvilinear trapezoidal hole. h) Comparison 
of calculated resonance frequencies of the curvilinear f-PAS according to the channel number. i) Relative sensitivity of the f-PAS and reference microphone 
over a voice frequency range from 100 to 4000 Hz. g–i) Reproduced with permission.[67] Copyright 2018, Elsevier.
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samples X = {x1, x2,⋅⋅⋅, xN} and its label set Y = {y1, y2,⋅⋅⋅, yN},  
the machine learning algorithm can learn a function f(X) to 
generate the output vector Y from the input X. After function 
f(X) is formulated in the training phase, the trained model can 
predict the labels for the new data examples. Validation data are 
used for model selection with the parameter that is estimated 
by training data. The validation loss/error is the loss/error that 
can be obtained by using the trained model for the validation 
data. The performance of the algorithm is evaluated on the test 
data. Machine learning has exhibited its marvelous capability 
of signal processing for image, video, and audio data.[178–183]

Speech processing has been developed to analyze the 
speech signals by computer for bilateral communication.[184] 
Recent researches in automatic speech recognition (ASR) 
systems allowed the smooth interaction between machine and 
human.[185,186] The ML techniques open avenues for performing 
various speech processing tasks such as speaker identification, 
speaker localization, language identification, speech translation, 
and speech recognition.[187–189] There are major machine learning 
methods for speech processing that have been discussed below 
including: the standard methods (GMM, SVM, HMM), and 
the deep learning approaches (DNN, CNN, RNN). The input 
features of these machine learning algorithms are the extracted 
data from the waveform speech, including mel-frequency 
cepstral coefficients (MFCC), spectrogram, constant-Q trans-
forms, and auditory filter bank.[190–193] A spectrogram can be 
generated by bank of band-pass filters, Fourier transform, and 

wavelet transform. STFT is Fourier transforms of short segments 
of a long-time signal. Auditory filter bank is set of parallel band 
pass filters that are designed to mimic the frequency resolution 
of human hearing.

Gaussian mixture models (GMM) demonstrated the great 
performance for speaker recognition without extensive data, 
which allowed GMM one of the best choices in modeling 
speech data for decades.[194–196] GMM-based algorithm was 
adequate in showing the performance difference between the 
piezoelectric acoustic device and the commercialized micro-
phone. GMM is a probabilistic model that represents normally 
distributed subpopulations among the overall population. 
Figure  6a illustrates the GMM model that consists of the 
mixture weights, the means and variances of Gaussians. Given 
GMM with K components, the kth component is represented by 
Gaussian mean µk and variance σk

2. The mixture component 
weight φk is constrained with ∑ φ =

=
1
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The optimal parameters for Gaussian distributions are deter-
mined by expectation maximization (EM), which is an iterative 
algorithm for estimating maximum likelihood on the data.[197] 
For mixture models, EM consists of two main steps: E-step and 
M-step. Given a joint distribution p(x, z; θ) of the observed and 
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Table 2.  Summary of main parameters in piezoelectric acoustic sensors.

[Ref. [62]] [Ref. [63]] [Ref. [64]] [Ref. [65]] [Ref. [66]] [Ref. [67]]

Material PVDF film PVDF film PVDF nanoweb AlN film PZT film PZT film

Thickness of material 

[µm]

40 50 40 0.5 2 1

Device structure Microbeam array + trap-

ezoidal membrane

MIM + cylinder-shape 

encapsulation

MIM + substrate with 

trough hole

Cantilevers with  

different length
IDE + trapezoidal 

membrane

IDE + curvilinear  

trapezoidal membrane

The number of channel 24 1 1 8 3 7

Resonance frequencya) 

[kHz]

1.4–4.9 <8 0.22 2.6–13.3 0.5–1 0.65–3

Sizeb) [mm2] 799 7.5 1200 7.05 300 <450

Sensitivityc) [mV Pa–1] 0.0253d) <0.045e) 266f) (@ 0.22 kHz)

8.9g) (@ 1 kHz)

1.67 (@ 7.62 kHz) h) >45i) (@ 0.65 kHz)

Opportunities Multiple resonance 

bands

Small size High sensitivity Multiple resonance bands

Broad frequency response

Small dimension

Multiple resonance 

bands

Thin film

High sensitivity

Multiple resonance 

bands

Thin film

Challenges Low sensitivity

Large dimension

Low sensitivity

One resonance band

Thick film

One resonance band

Narrow frequency 

response

Low sensitivity at high 

frequency

Large dimension

Low sensitivity Narrow frequency 

response

Large size

Large size

a)The ranges were described in cases of multiresonance, since every resonance frequency was not mentioned; b)Size was based on the area of piezoelectric materials; 
c)Sensitivity = V/P = ×/( 10 ),0

/20
0V P PLp  is the reference sound pressure of 0.00002 Pa and Lp is the SPL in decibel.[64] The sensitivity was calculated by using the peak 

voltage under monochromatic sound wave input; d)The measurement frequency of peak voltage was not mentioned in the paper; e)The sensitivity was converted by 
excluding the gain of 1000; f)The value can be different by the condition of dB SPL. (60 mV Pa-1 was calculated by using the output voltage of 1.2 mV at 60 dB); g)The 
sensitivity decreased at the frequency above 500  Hz, since the output voltage fluctuated to almost zero in the frequency range of 400–1500  Hz; h)In this paper, the 
output voltage under monochromatic sound wave was not described; i)The sensitivity at 650 Hz was predicted based on 1 kHz condition, since the output voltage under 
monochromatic sound input of 650 Hz was not measured.
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latent variables x and z, the maximum of the likelihood p(x|θ) is 
required. The parameters θ0 is initialized from the beginning. 
The first step is expectation (E-step) that evaluate p(z|x; θn−1)  
by computing the EM auxiliary function Q. The EM auxiliary 
function is determined by the expectation of the probability 
density function (PDF), p(x, z; θ)

θ θ θ( ) [ ]( )= θ
−

−; log , ;1
| ; 1Q E p x zn

Z X n � (4)

where n  > 0 denotes the iteration index, θ is the unknown 
parameters vector that contains µk, σk and φk, x is the observed 
data, and z is the random variable referred to as missing data. 
The second step is maximization (M-step) that maximizes 
the expectation computed from the E step with respect to the 
model parameters and then, update the model parameters µk, 
σk and φk:

arg max ; 1Qn nθ θ θ( )=  
( ) −

� (5)

The M-step helps to re-estimate parameters based on the 
auxiliary function Q. The two above steps are repeated until the 
convergence condition satisfied. GMM+SVM model has been 
applied effectively for speaker verification task.[198] In this system, 
input to GMM are the MFCC features which were extracted from 
the speech data. GMM produces GMMs scores for these features 
and then trains an SVM classifier to map those score values to 

posterior probabilities. The final classification for speakers is 
determined by selecting the maximum probability.

SVM is an effective binary-classifier. Given two binary classes 
{−1, 1}, the decision boundary for two classes can be defined as 
follows

φ( ) ( )= +y x W x bT � (6)

where b is the bias, W is the model parameter, and φ(x) is the 
feature-space transformation. Assuming the training set is line-
arly separable with N samples, the desired solution should yield 
the best generalization among the many solutions of the form 
(6). The best generalization can lead to highly accurate perfor-
mance on unseen data that was not used for training. The SVM 
approaches the solution with the concept of margin that is the 
perpendicular distance between the decision boundary (y  = 0) 
and the closest point as shown in Figure 6b. A set of data points 
in dotted circles are support vectors helping SVM to locate the 
decision boundary. In addition, SVM obtains better generaliza-
tion by applying the structural risk minimization (SRM) that 
can select an optimal model for finite dataset.[199] Although SVM 
is the state-of-the-art classifier, it requires a space complexity of 
O(n2), where n is the training set size to find the optimal solu-
tion of SVM problem.[200] SVM is an effective and powerful algo-
rithm in the voice activity detection (VAD) problem.[201–203] VAD 
is the task that identifies whether speech is present or absent in 
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Figure 6.  a) A simple GMM binary classifier. There are two classes represented by blue and red data points. In 1D plot, the original data were located 
in a horizontal line, showing their estimated probability distribution functions (PDFs) with EM algorithm (black line). The blue and red lines represent 
the exact PDFs. In 2D plot, the estimated PDFs were drawn by the contour plots and the original data of two classes were shown in the blue and red 
circles. b) Illustration of the SVM for binary classification. The black line represents the boundary that maximizes the margin between two classes. 
There are three support vectors that determine the boundary (data points within the dashed circles). c) HMM model with four states: S1, S2, S3, and 
end. The state transition probability between state i and j is represented by aij. The sequence of the observation (o1, o2, o3 and o4) was generated by 
four states of HMM. d) A general neural network that is the premise for deep learning. This artificial neural network models the human brain. The 
model contains input, output layers, and many hidden layers which are connected to construct a large mesh network, however, there is no connection 
within the neurons of layer.
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the audio data. The MFCC feature is extracted from the input 
audio. These MFCC feature vectors have been used as the input 
for training a binary classifier SVM with two classes of speech 
and nonspeech. The trained SVM classifier produces the scores 
to obtain the labels for test utterance frame. For speech recogni-
tion, the combination of SVM and HMM is necessary. HMM 
is used to represent the temporal dynamics of the input speech 
and align those features into states. An SVM classifier in each 
state of HMM is trained to classify the speech frames into single 
phonemes. These outputs are used for estimating the emission 
probabilities in the HMM decoder.

Hidden Markov models (HMMs) are based on the assump-
tion that the very short segment of a voice signal (milliseconds) 
could be approximated as a stationary process.[204] HMMs are 
the important models for processing the sequential speech 
data. Figure 6c shows that the observation sequence was gener-
ated by four states with state transition probability. In HMMs, 
there are hidden states, each state generates the observation 
with emission probability. The Markov chain provides the 
joint distribution of random sequences. In speech recognition 
system, given the acoustic data X, HMM finds the most likely 
sequence of words as follows

=ˆ arg max ( | )w p w XX � (7)

where ŵ is the desired output sequence, X is the feature vector 
extracted from the input waveform, w is the set of all possible 
sequences, and p denotes the probability. The processes of 
HMM include evaluation, decoding, and training. The evalua-
tion phase computes the probability of observation sequences 
with the forward algorithm. The state sequence that maximizes 
the observation probability is found by Viterbi algorithm to 
decode the speech to text.[205] Finally, the most likely words are 
determined using the Baum-Welch (Forward–Backward) algo-
rithm to customize the parameters to maximize the probability 
of observed sequences. In the GMM/HMM, GMM is used for 
emission (observation) probability at each hidden state of an 
HMM. The GMM/HMM-based method is the standard in the 
acoustic models.[206]

Deep learning can learn complex representations to provide 
high performance for tasks, while classical algorithms are based 
on hand-crafted features. Furthermore, deep learning based 
architectures exceeded the human performance in many tasks 
by using the mechanism of artificial neural networks, as illus-
trated in Figure 6d.[178,183,207,208] Multilayer perceptron (MLP) is 
a kind of neural network having input, hidden and output layer 
where each node in each layer (except the input layer) uses 
an activation function such as ReLU, sigmoid, and tanh.[209] 
MLP with more hidden layers can be considered as the deep 
neural networks (DNNs). MLP was used to approximate the 
maximum of a posterior probability.[210] This idea is to combine 
MLP and the standard HMM to utilize the advantage of MLP 
on the discriminative capability and the ability to estimate the 
posterior. A sequential MLP (SMLP) was introduced to apply 
a sequence of MLPs to recognize words.[211] Although the per-
formance of recognizing words is increased by a sequence of 
MLPs, the difficulties in learning process of MLPs should be 
solved such as the heavy computational load, longer time for 
training, and greater liability of overfitting for the MLP with 

deeper architecture.[212] DNN can replace GMM method in 
speaker recognition by modeling the distribution of features 
extracted from the speech data.

Convolutional neural network (CNN) is a neural network 
that contains modules with convolutional layers and pooling 
layers.[213] This kind of architecture is more efficient in terms 
of memory and complexity compared to a conventional neural 
network, sharing the weights that led to avoid overfitting.[214] 
In the speech processing tasks such as speaker recognition and 
speech to text, CNN takes MFCC features (2D) as the input, 
and treats these features similar to image for classification.  
A typical CNN contains a series of the convolutional layers 
calculating feature maps via the corresponding learnable 
kernels. The max-pooling layers are behind convolutional 
layers, which perform down-sampling the feature maps by 
selecting the maximum value in the subregion that have 
values as input for pooling layers. The maximum value is the 
output from max-pooling layers. Using the subsampling layer, 
the model not only mitigates the computational cost but also 
obtains the robustness to the variation from the local pattern. 
The CNN network is trained to learn local speech features 
from MFCC input. The trained CNN produces the local speech 
feature vectors and these outputs are fed into RNN. This RNN 
is capable of learning history and future contextual features 
from the input (temporal dynamic of speech). A fully connected 
softmax layer (FC) is then applied for the RNN’s output. This 
FC layer produces the probability for the given input speech. 
The network CNN/RNN is trained end-to-end using the 
stochastic gradient descent (SGD) optimizer with momentum. 
Recent studies showed that advancements in CNN enabled the 
replacement of GMM/HMM-based ASR system.[215]

Recurrent neural network (RNN) is a powerful deep 
learning architecture for sequential data like speech or text. 
The corresponding hidden state is obtained from the previous 
state, which can provide the output by using the input at a 
timestep. Given input X = {x1, x2,⋅⋅⋅, xN} , RNN determines the 
hidden vector of sequence H = (h1,  h2,⋅⋅⋅, hT) and the output 
Y = (y1, y2,⋅⋅⋅, yT) by the formula as follows

( )= + + = +−f ,xh hh 1 h hy yh W x W h b y W h bt t t t � (8)

b and f(.) are the bias and the activation function.[216] Wxh, Whh, 
and Why indicate weights of input-hidden, hidden-hidden, and 
hidden-output, respectively. RNN can learn and process the 
sequential speech data to predict what will be coming next by 
extracting relevant information. Graves et  al.[216] achieved the 
best score in TIMIT phoneme recognition by using RNNs to 
train end-to-end. The speech data were processed to extract 
auditory filter-bank to form the input to the RNN model for 
phoneme recognition. RNNs suffer from vanishing gradients 
problem in training. The various studies have proposed to 
tackle that problem, such as long short-term memory (LSTM) 
or gate recurrent units (GRU).[217–219]

6. Speaker Recognition

Speaker recognition combined with artificial intelligence has 
attracted considerable attentions in the fields of biometric 
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security, bilateral AI communication, and IoT appli-
ances.[16,17,21,22,26,27,42–45] Innovative personalized AI services 
such as AI secretary, authentication and security can be 
designed by analyzing the data of individual speaker such as 
preference and habit, depending on user voice.[220–222] Advanced 
acoustic sensors with optimized machine learning algorithms 
should be required for accurate speaker recognition.

Han et  al.[3] demonstrated a speaker recognition utilizing 
flexible piezoelectric acoustic sensor (f-PAS) and machine 
learning process as illustrated in Figure  7a. A flexible piezo-
electric thin film was fabricated by ILLO process to transfer 
PZT thin film onto plastic substrates. To cover entire speech fre-
quency range of human utterance, seven channels of IDEs were 
printed on the piezoelectric thin film using photolithography 
technique.[223–225] This seven channel f-PAS can produce the 
multiple electrical signal with abundant voice information in a 
single speech. The Gaussian mixture modeling (GMM)-based 
machine learning algorithm was applied to store the frequency  

characteristics of multi voice signal generated by f-PAS in the 
training database. Finally, the random speeches were analyzed 
with the trained database to evaluate speaker recognition. 
Figure  7b illustrates the multichannel structure and electrical 
waveform produced by input sound pressure, respectively. 
This seven channel f-PAS was designed in the form of a piezo-
electric thin film of concaved trapezoidal shape by mimicking 
the active BM within the human cochlear. Self-powered flexible 
acoustic sensor successfully expressed the output waveforms as 
a function of time, showing similar shape with standard speech 
of TIDIGIT. As shown in Figure 7c, the generated speech data 
from the multichannel f-PAS was processed through machine 
learning algorithm to recognize speaker. The GMM-based 
speaker process algorithm utilized the standard TIDIGITS 
dataset (77 speeches per each person, 40 speakers, and a total 
of 3080 sound data). Among these 3080 sound data, 90% (2800 
sound data) were used for speaker training process and the 
other 10% (280 sound data) were utilized for testing process. 

Adv. Mater. 2020, 32, 1904020

Figure 7.  a) Overall illustration of the speaker recognition system based on machine learning. The f-PAS produces multi signals while the multichannel 
piezoelectric film vibrates according to the speaker’s voice. The GMM algorithm-based training and test procedure are demonstrated by using the multi 
signals. Speaker recognition is performed by this process. b) Schematic depiction of flexible piezoelectric acoustic device with its output voice signal 
from each channel. c) The flow chart of speaker training and test process using the TIDIGITS dataset (90% of TIDIGITS used for training data, and 10% 
for testing data). d) Relative response of two-averaged (red), seven-averaged (blue), the highest and the second highest outputs over the voice range 
of 100 Hz to 4 kHz. All signals were normalized to 0 dB at 1 kHz. e) Comparison of recognition error rate of commercial phone and the f-PAS (seven-
averaged and two-averaged) in the mixture number of 30. a–e) Reproduced with permission.[3] Copyright 2018, Elsevier. f) Comparison of detection error 
tradeoff curve among acoustic i-vector, phonetic bottleneck i-vector, and x-vector. Produced with permission.[228] Copyright 2018, IEEE. g) Visualized 
speaker embeddings with t-SNE. Five speaker embeddings were projected on two axes. Reproduced with permission.[229] Copyright 2018, IEEE.
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After the training and testing sound data were compared with 
short-time Fourier transform (STFT) features, the speaker was 
identified by calculating STFT absolute value.

Figure  7d shows the relative responses of f-PAS when the 
white noise was swept from 100 to 4000  Hz under the 94  dB 
sound pressure level. The red line was obtained by averaging 
the most and the second highest value among the seven channel 
output according to the relative frequency, while the blue line was 
acquired by averaging all the electrical output signals. The speaker 
recognition rate of f-PAS and a commercialized condenser type 
microphone were compared according to the number of mixture. 
The speaker recognition rates of the two-averaging f-PAS and 
reference microphone sharply increased until the 10 mixtures, 
and saturated to show 97.5% and 90% speaker recognition rate, 
respectively. As the number of mixture increased, the speaker 
recognition rate of the f-PAS exceeded the commercialized micro-
phone since the output of f-PAS contained more sound informa-
tion of Gaussian profiles rather than reference microphone.

Figure  7e presents the speaker recognition error rate of 
f-PAS and the reference microphone in the mixture number 
of 30. The two-averaged error rate was only 2.5%, showing the 
75% reduction in comparison with that of the commercial-
ized microphone. This outstanding speaker recognition rate 
was attributed to sufficient voice information of multichannel 
sensor outputs, and the highly sensitive performance of f-PAS. 
This work compared the recognition rate between the f-PAS 
and the commercial device, using speech processing of 40 
speakers/3080 utterances. Other researches of triboelectric and 
ferroelectret acoustic sensors showed sensor sensitivity and 
simple voice verification.[52,53,226]

Most of the speaker recognition researches have been studied 
based on commercial microphones.[227–229] Snyder et  al.[228] 
improved the speaker recognition by using DNN embedding 
architecture and commercial microphones. For speaker rec-
ognition, the x-vectors extracted from DNN were used, like 
i-vectors. Figure 7f shows the comparison of recognition result 
among acoustic i-vector, phonetic bottleneck i-vector, and 
x-vector. Acoustic i-vector is the GMM-based traditional i-vector 
system, however, phonetic bottleneck i-vector is based on ASR 
DNN acoustic model. The x-vector DNN required only speaker 
labels for training, although transcribed data are necessary for 
other systems. The DNN embedding x-vector system exhibited 
low EER of 4.16% after adding augmented microphone speech.

Novoselov et  al.[229] analyzed the performance of CNN based 
speaker recognition system. The deep neural network extractors 
were trained in multitask mode with voice database recorded by 
the Android-based mobile phone, iOS-based mobile phone, and 
web-camera. In addition, the network was trained to discriminate 
between speakers and digits simultaneously. The speaker pro-
nouncing a particular digit was assigned an individual class, 
which increased total amount of classes corresponding to the 
number of neurons. The deep CNN-based system showed the 
embedding discriminative capability as illustrated in Figure 7g. 
Randomly selected five speaker embeddings were visualized 
on two principal axes. The speaker and text discriminative 
embeddings enabled not only automatic validation of correct-
ness but also usage of multi languages (English and Russian). 
Furthermore, the CNN system with multitask learning surpassed 
the classical algorithms to achieve 2.85% EER. Since the error 

rate of algorithms changes depending on the quality of recorded 
speech data,[230] speaker recognition rate can be enhanced by inte-
grating the f-PAS with advanced machine learning algorithms.

7. Conclusion

We have summarized the recent progress of self-powered flex-
ible piezoelectric acoustic sensors and machine learning algo-
rithms.[3,62–67,175–219] Self-powered devices on plastics were 
developed using various piezoelectric materials such as ZnO NW 
array, PVDF nano fiber web, and perovskite thin films.[64,68,133,231,232] 
Highly sensitive flexible inorganic acoustic sensors covered entire 
voice frequency band (100–4000 Hz) depending on multichannel 
resonances of bioinspired trapezoidal membrane. In addition, 
multiple electrical signals from self-powered acoustic sensors 
were detected upon single utterance, which provided abundant 
speech information.[67] Classical machine learning techniques of 
speech processing were applied in simple recognition with TIMIT 
database.[233,234] The mechanism of artificial neural networks was 
utilized in machine learning to exceed the human performance 
in speech processing by deep learning. Speaker recognition of 
multichannel flexible piezoelectric acoustic sensors was demon-
strated by utilizing GMM-based machine learning algorithms.[3] 
The f-PAS is expected to be improved by further development 
such as miniaturization, broadening the frequency band, filtering 
the surrounding noises, modularization, and efficient deep 
learning algorithms. Synergistic collaboration between advanced 
acoustic sensors and optimized speech recognition algorithm will 
open the new AI services such as biometric authentication and 
personalized IoT services.
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