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ABSTRACT Queries. In Proceedings of the 2020 ACM SIGMOD International Con-

The concept of OLAP query processing is now being widely
adopted in various applications. The number of complex
queries containing the joins between non-unique keys (called
FK-FK joins) increases in those applications. However, the
existing in-memory OLAP systems tend not to handle such
complex queries efficiently since they generate a large amount
of intermediate results or incur a huge amount of probe cost.
In this paper, we propose an effective query planning method
for complex OLAP queries. It generates a query plan contain-
ing n-ary join operators based on a cost model. The plan does
not generate intermediate results for processing FK-FK joins
and significantly reduces the probe cost. We also propose an
efficient processing method for n-ary join operators. We im-
plement the prototype system SPRINTER by integrating our
proposed methods into an open-source in-memory OLAP
system. Through experiments using the TPC-DS benchmark,
we have shown that SPRINTER outperforms the state-of-the-
art OLAP systems for complex queries.
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1 INTRODUCTION

There are a number of in-memory OLAP query process-
ing systems for large-scale data analytics such as Quick-
step [34], MemSQL [11], MonetDB [9], Hyrise [16], Ora-
cle [23], DB2 [6], SQL Server [24], SAP HANA [41], Pelo-
ton [28], OmniSci [33], CoGaDB [10], Kinetica [21] and
Ocelot [17]. These systems mainly focus on processing con-
ventional star/snowflake join queries efficiently that contain
a number of join operations between a primary key of a
table and a foreign key of another table [45, 50]. One of the
goals of query optimization in those systems is reducing the
cost of processing intermediate results caused by the join
operations in a query plan [40, 45]. To achieve the goal, the
existing systems exploit various techniques such as pipelin-
ing of intermediate results [28, 50].

The concept of OLAP query processing is now being
widely adopted in various applications including graph an-
alytics [1, 13], artificial intelligence [22], and bioinformat-
ics [20, 26]. As the applications become complex, the query
workload in those applications tends to become more and
more complex. In particular, the number of queries which
contain join operations between a pair of foreign (or non-
unique) keys rather than a conventional pair of primary and
foreign keys increases in the applications. We denote such a
join operation as a FK-FK join in this paper. A FK-FK join usu-
ally incurs a large number of join results due to duplicated
join key values. If a query contains FK-FK join operation(s)
between two fact tables, it becomes more difficult to process
the query efficiently due to a huge amount of intermediate
results. Such complex queries are commonly occurred on
a database having a snowstorm schema which consists of
multiple star or snowflake schemas [3]. For example, the
TPC-DS benchmark uses a snowstorm schema, and 26 out
of a total of 99 queries in the TPC-DS benchmark (i.e., 26.2%
queries) contain one or more FK-FK join operations [30].

The existing OLAP systems tend not to handle the complex
queries containing FK-FK join operations efficiently. They
typically generate a left-deep join tree and process the plan in
an operator-at-a-time manner, where the performance may
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be significantly degraded, or processing itself may fail, due to
too large amount of intermediate results to be processed by
the next operator of a FK-FK join (or a non-key join) operator
in a query plan [47]. The pipelining technique evaluates a
series of multiple join operators in a join tree by looking up
each tuple of a probe relation in a set of hash tables built
from the remaining relations [27, 50]. It may be effective
for a query of PK-FK joins, but may not be effective for a
complex query containing FK-FK joins on fact tables due
to the following two issues: a lot of key comparisons and
a large amount of memory usage. First, a join key value of
each tuple in a probe relation needs to be matched to all
the duplicate key values in the hash tables. There may be a
lot of matches due to the FK-FK join operations, which can
largely degrade the query performance in proportion to the
degree of duplication of join key values. Second, keeping a
set of all hash tables built from non-probing relations in main
memory requires a large amount of memory, in particular,
when the number of fact tables increases. Due to the above
two issues, the performance may be significantly degraded,
or processing itself may fail when we use the pipelining
technique for a query containing FK-FK joins.

In this paper, we propose an efficient query processing
method called SPRINTER for complex OLAP queries contain-
ing FK-FK joins. The intuition behind SPRINTER is that a
query plan of n-ary join operators can reduce the amount
of intermediate results compared to the one of a series of
binary join operators, and multi-way join processing [44]
is not always, but can be very efficient for processing the
query plan. Multi-way join processing has been used for
distributed query processing [2, 13, 49] and graph pattern
query processing [31, 44], but has almost not been used
in in-memory OLAP systems since hash join usually out-
performs sort-merge join in in-memory processing envi-
ronments [5, 39], and OLAP queries are ad-hoc and acyclic
different from graph pattern queries. We propose a query
planning method that can generate a query plan containing
n-ary join operators instead of a conventional plan having
only a series of binary join operators.

In general, it is non-trivial to generate a query plan having
n-ary join operators (called n-ary join tree) since the search
space of query plans becomes larger compared to when con-
sidering only binary join operators. Our proposed query
planning method searches a good query plan heuristically
and recursively based on a cost model. We present the cost
model used and a query optimization method that allows the
query planning method to generate an n-ary join tree only
when it is beneficial compared to the conventional binary
left-deep join tree. Then, we explain an n-way join processing
method for an n-ary join operator that is based on the worst-
case optimal join algorithm. We implement all our methods
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into one of open-source modern in-memory OLAP process-
ing systems, OmniSci [33], across all relevant layers and
modules including the query plan generator and the physi-
cal join operator. Through extensive experiments using the
TPC-DS benchmark, we have demonstrated that SPRINTER
significantly outperforms the state-of-the-art OLAP query
processing systems in terms of both processing speed and
data size that can be processed without our of memory.
Our major contributions are summarized as follows:

e We propose a query planning method that can generate
n-ary join trees for complex OLAP queries containing
FK-FK joins.

We propose a cost model and a query optimization
method for n-way join trees.

We present a n-way processing method for an n-ary
join operator that is based on the worst-case optimal
join algorithm.

We implement a prototype system based on an open-
source OLAP system across all relevant layers and
modules including the query plan generator and the
physical join operator.

Throughout extensive experiments, we have demon-
strated that SPRINTER significantly outperforms the
state-of-the-art CPU-based and co-processing OLAP
processing systems.

The rest of this paper is organized as follows. In Sec-
tion 2.2, we present a worst-case optimal join algorithm
used in SPRINTER. In Section 3, we describe a motivation
example of this paper. In Section 4, we propose the query
planning method for n-ary join trees. In Section 5, we present
an n-ary join processing method and optimization techniques
to improve query performance. We propose the cost model
in Section 6. Section 7 presents the results of experimental
evaluation. Finally, we discuss related work in Section 8 and
conclude this paper in Section 9.

2 PRELIMINARIES
2.1 Sorting algorithms

In this section, we summarize the existing parallel sorting
algorithms and techniques used in our SPRINTER in Table 1.
Although the core contribution of this paper is the optimiza-
tion of the queries containing FK-FK joins using n-ary join
operators, sorting using GPU can further improve the query
performance when the sizes of inputs of n-ary join operators
become very large. Thus, SPRINTER uses different sorting
algorithms and techniques depending on the cardinality of a
table to be sorted, the number of sorting columns, and the
capacity of GPU memory in case of GPU sorting.
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The comparison-based algorithms in Table 1 mean that
they require the comparison between key values for sort-
ing (e.g., quick sort, merge sort, bubble sort), and the non-
comparison based algorithms mean that they do not require
such a comparison for sorting (e.g., radix sort). For a given
input array of N tuple values, each of which consists of
k columns, it is known that the limit of the speed of the
comparison-based algorithm is O(N - logN), while that of
the non-comparison based algorithms is O(k - N). Thus, the
latter is usually faster than the former if k is small.

Table 1: Parallel sorting algorithms and techniques
used in SPRINTER.

comparison / . . .
processor . algorithm implementation
non-comparison
comparison merge Intel TBB[37]
CPU - .
non-comparison radix Thrust[7]
GPU comparison merge Thrust[7]
non-comparison radix CUB[29]
P i P
CPU comp ar1son((? U, merge(CPU), | heterogeneous
- non-comparison radix(GPU) sorting[15]
GPU (GPU)

Most of GPU sorting algorithms only can sort the data that
can fit in GPU memory. However, the input array to be sorted
can be much larger than the capacity of GPU memory in
OLAP systems. In that case, SPRINTER uses heterogeneous
sorting [15] that exploits both CPU and GPU efficiently. Fig-
ure 1 shows the timeline of heterogeneous sorting for an
input array X, where we assume that X is too large to fit
in GPU memory, and so, we need to split it into six subar-
rays {Xi, - - - , Xs}. Although heterogeneous sorting can use
different algorithms on CPU and GPU theoretically, we use
radix sort on GPU and merge sort on CPU since the combi-
nation usually shows the best performance. Heterogeneous
sorting uses multiple GPU streams in order to hide the cost of
data copy between main memory and GPU memory as much
as possible by overlapping three kinds of low-level GPU op-
erations, H2D copy, sort, and D2H copy. It performs merge
sort for some sorted subarrays in main memory using CPU
immediately whenever they are available. We assume that X
is the global sorted array and initialized as an empty array.
The red boxes in Figure 1 show such an immediate merge
sort using CPU, where merge({X;, X;}) performs merging a
set of sorted chunks {X;, X} into X.

[H2D(X,) Fadix(X,)[D2H(X,) [H2D(X,) Fadix(X.)[D2H(X,)| stream 1

GPU [H2D(X,) Fadix(X,)[D2H(X,) |H2D(Xs) Fadix(Xs)| D2H(Xs)| stream 2
[H2D(Xs) fadix(Xs) D2H(Xs) [H2D(X) Fadix(Xs| D2H(X,) | stream 3
crPuq merge((X,, X,J)| [merge((X;, X)) merge(Xs, ¥cJ)

Timeline

Figure 1: Timeline of heterogeneous sorting [15].

2057

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

2.2 Worst-case optimal join algorithm

In this section, we describe the worst-case optimal join algo-
rithm that our SPRINTER utilizes for processing of an n-ary
join operator. The worst-case optimal join algorithms [13, 44]
are mainly proposed to process a graph pattern query (e.g.,
triangle query) efficiently by avoiding the generation of in-
termediate results. Some algorithms [1, 31, 44] require pre-
processing input relations and storing the result of prepro-
cessing as a data structure like B+-tree before join, while the
others [13, 47] just sort the relations and perform join over
the sorted relations using binary search. We use the latter
kind of algorithms, in particular, Tributary Join (TJ) [13].

Figure 2 illustrates the processing of TJ for a triangle query
Q(x, vy, z) :=- R(x,y), S(y,z), T(x,z),whereR, S, and
T are the edge relations. The worst-case optimal join algo-
rithms usually use a fixed global ordering on all join variables.
We assume the global variable order is x < y < z in Figure 2.
The TJ algorithm sorts R by (x,y) due to the order x < y,
sorts S by (y, z) due to the order y < z, and sorts T by (x, z)
due to the order x < z, for preprocessing. Then, TJ starts by
scanning all relations on the first join variable x (i.e., R and
T) and proceeds as merge join until finding a matching value
for the variable, e.g., x = 1. Then, it simply computes the
residual query Q’(y, z) = Ryx=1(y), S(y, z), Tx=1(z) recursively,
where the residual relations Ry-; and Ty-; are actually sub-
arrays of R and T having x = 1 obtained by adjusting the
start and end points in R and T. During the recursive call, it
scans all relations on the next join variable y until finding a
matching value y = 3. Then, it proceeds recursively again
by scanning over z and finally outputs (1, 3, 4).

When seeking a specific value in an array or subarray (e.g.,
seeking y = 3 in S), TJ uses binary search, and so, the cost
of a single seek is O(logN). However, the dominating cost
of TJ is the sorting cost of input relations [13]. If a query
has L join variables, the number of possible global variable
orders is L!. Although TJ is worst case optimal given any
variable ordering, this “worst case” practically can be far from
optimal because of different search cost that each variable
order has, and so, TJ estimates the cost of join processing for
each possible order and choose the best one.

.
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Figure 2: Example of Tributary join [13].
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3 MOTIVATION

In this section, we present a motivating query that shows the
drawbacks of the existing OLAP query processing systems.
The query is the one on the TPC-DS benchmark database [30]
and widely used for testing the query performance of the
OLAP systems [18]. Although the query contains various
operations including aggregation, we focus on join opera-
tions in this section. Figure 3 shows a join graph of the query,
which contains three fact tables {SS, SR, CS} of blue rectan-
gles and three dimension tables {D, I, C} of green rectangles.
For simplicity, we use only the abbreviations of the relation
names in this paper. In the figure, we describe join condition
on each edge of the join graph. There are two FK-FK join
operations of blue lines, and five PK-FK join operations of
green lines.

D.date =SS.date  SS.cust =SR.cust SR.cust= CS.cust

(PK) (FK) (FK) (FK) =1 (FK) (FK)
EX [ss] [sR] [cs]

[ Fact
SR.cust 7 C.cust ’ )
o 6‘6?0 FK) | (PK) 6009\ [] Dimension
) %, (G5
oot TSa SN — FK-FK join
A\Q}‘\g , O(/& 0.0\)?@
W s S PK-FK join

Figure 3: A join graph of the motivating query.

Figure 4 shows the query plans generated by System-X,
OmniSci [33], and our SPRINTER for the motivating query
and their performance. System-X is a full-featured state-of-
the-art commercialized in-memory database system with
a support of index-driven query execution and query opti-
mization techniques such as bloom filter and adaptive join.
It supports a number of query processing techniques such as
index-driven query execution, bloom filter and adaptive join.
In Figure 4(a), it generates a left-deep join tree for a query
plan and executes the plan in an operator-at-a-time manner.
C1, C2, and C3 are the same relation, i.e., a relation C, but
dealt with as different relations during query processing,
which is common in OLAP processing systems. In addition
to System-X, a number of systems including MonetDB [9],
CoGaDB [10], Kinetica [21] and Quickstep [34] generate al-
most the same query plan as in Figure 4(a) and execute it in
an operator-at-a-time manner.

The plan in Figure 4(a) generates 2.23 billion (B) interme-
diate tuples before the last join as the left operand and takes
144 million (M) tuples of CS as the right operand. Then, it
builds the hash table for the 144 M tuples and probes the
2.23 B intermediate tuples against the hash table. Because
the join operation is FK-FK join, and there are many dupli-
cate key values in the hash table, the number of times that
the key values in the hash table are accessed during probing
for join, which we call probe cost, is enormous, specifically
160.9 B times.
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OmniSci [33] is an open-source co-processing database
system, where co-processing means exploiting both CPUs
and GPUs for query processing. In Figure 4(b), it gener-
ates a query plan of a left-deep join tree as in Figure 4(a),
but executes the plan in a non-blocking and pipelined man-
ner which does not generate and store intermediate results
for join. In detail, it evaluates a series of all join operators
in the join tree by probing each tuple of the relation SS
against a total of seven hash tables built from the relations
{SR,CS,1,D,C1,C2,C3} sequentially. The first join between
SS and SR in Figure 4(b) probes each tuple of SS against the
hash table for SR of 29 M tuples, which probe cost becomes
4.1B. Then, the second join probes each of the tuples passed
the first join against the hash table for CS of 144 M tuples,
which probe cost becomes 20.7 B. We can calculate the probe
cost of each join similarly, and the total probe cost becomes
25.8B.

SPRINTER is the prototype system that our proposed
methods are integrated into OmniSci across all relevant lay-
ers and modules seamlessly. We choose OmniSci as a base
system for SPRINTER since it is one of the state-of-the-art
open-source modern database systems. Although we present
SPRINTER using OmniSci as the base system, SPRINTER
can use any database system as a base system in principle.
In Figure 4(c), SPRINTER generates a query plan consisting
of multiple binary join operators in white and a single n-ary
join operator in red. It executes each of three join subtrees,
ie., 51 ={SS,C1,D,I},S; = {SR,C2}, and S5 = {CS,C3}, in
a pipelined manner like OmniSci, and then, executes the n-
ary join operator in operator-at-a-time manner which will be
described in Section 5. When we calculate the total probe cost
for Sy, Sz, and Ss, it becomes just 758 M. In addition, when we
calculate the total cost of processing the n-ary join among
the results of three join subtrees, it becomes 312 M. Overall,
the total processing cost of SPRINTER is about 1.07 B, which
is much smaller than those of the other two systems.

Figure 4(d) shows the query performance of the above
three systems for the TPC-DS SF=100 database. The per-
formance results show that OmniSci improves the perfor-
mance of System-X by eliminating the large intermediate
results through pipelining, and SPRINTER improves the per-
formance of OmniSci by splitting a single large join tree into
multiple smaller join subtrees and performing n-ary join
over the results of the join subtrees. We will explain a more
exact cost model than the figure in Section 6.

4 QUERY PLANNING METHOD

In this section, we first present the query planning method
for generating a query plan containing a single n-ary join
operator in Section 4.1. Then, we generalize the method
for more complex queries such that it can generate a query
plan required to contain multiple n-ary join operators in
Section 4.2.
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probe(CS)=160.98

p(C3)=90.3M

SS SR 29M
(b) OmniSci

SS C1
(a) System-X

Y.probe()=758M
> n-ary()=312M

mm System-X
mmm OmniSci
SPRINTER

800 745

600
472
400
200 113
0

(d) Query performance

Elapsed time (sec.)

(c) SPRINTER

Figure 4: Query plans for the motivating query.

4.1 Query of a single n-ary join operator

For query planning, we consider a join graph from a given
query Q, which is defined as in Definition 4.1.

Definition 4.1. (Join graph) A join graph G = (V,E, f(v €
V),g(e € E), h(e € E)) of a query Q is an undirected multi-
graph. A vertex v € V indicates a relation to be joined in
Q, and an edge e = (X,Y) € E a join operation between
two end tables X and Y, especially between X[i] and Y[j],
where i € X, and j € Y. There are three labeling functions
f(v), g(e), and h(e). The function f(v) returns the type of the
relation v, i.e., fact or dimension, the function g(e) the type
of the join operation e, i.e., PK-FK or FK-FK, and the function
h(e) the equi-join predicates of e, i.e., h(e) = (X[i], Y[j]).

In this section, we consider the case where a join graph
G contains only a single subgraph of vertices connected
through the edges of FK-FK join operations. We denote such
a subgraph as core subgraph and define it as in Definition 4.2.

Definition 4.2. (Core subgraph) A core subgraph of a join
graph G, i.e., core = (V,, E;) C G, is a connected component
in which any two vertices X and Y s.t. X € V,and Y € V,
connected through a set of edges Ex,y C E, s.t. g(e € Ex,y)
=FK-FK, f(X) = fact and f(Y) = fact.

In Figure 3, a subgraph {SS, SR, CS} is a core subgraph
since all vertices are fact tables, and a pair of vertices SS — SR
is connected via a FK-FK edge, and the other pair of vertices
SR — CS is also connected via a FK-FK edge. The subgraph
{SS, SR, CS} is the maximal subgraph connected through FK-
FK edges in the join graph in Figure 3. If a pair of vertices
SS—SRhastwo edges {e;, e2} s.t., g(e;) = FK—FK and g(e;) =
PK — FK, only e; belongs to the core subgraph {SS, SR, CS}.
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A system can find a core subgraph in most cases based on
metadata and statistics such as referential constraints, table
cardinality and the number of distinct values of a column. In
case that a system has limited knowledge about them, the
techniques for finding them including automatic foreign-key
detection [12, 48] will be helpful to find a core subgraph.

If a join graph G has only a single core subgraph core,
then we can decompose G into the core subgraph core and
a set of non-core subgraphs which are disjoint with each
other in terms of edges. Here, any two subgraphs of either
core or non-core can have one or more common vertices
between both subgraphs. Figure 5 shows one of possible
decompositions for the join graph in Figure 3, where there
are a single core subgraph core = {eq4, es} and three non-
core subgraphs G; = {es, e, €7}, G2 = {e2}, and G = {e;}.
In general, there are a lot of possible decompositions for a
join graph. We denote a set of possible decompositions as
{D;}. For example, we can decompose the join graph into a
single core subgraph core = {e4, es} and a single non-core
subgraph G; = {ey, ey, €3, €, €7 }. Then, we can represent the
above two decompositions as D; = {core, G1, G,,G3} and
D; = {core, G, }.

Figure 5: A decomposition of the motivating query.

Algorithm 1 presents the basic query planning method
for a query containing only a single core subgraph. The
intuition behind this method is making a core subgraph a
root node of a query plan and making non-core subgraphs the
children of the root node in the query plan. It finds possible
decomposition {D;} from a join graph G (Line 2), generates
a query plan P; from each decomposition D; (Lines 3-9), and
then picks the best plan P* having the minimum cost among
them (Line 11). We will present the cost model for a plan in
Section 6. When making a join subtree S; from a non-core
subgraph G; (Line 6), there are a lot of possible join subtrees
in general. We however only consider generating a left-deep
binary join subtree for a non-core subgraph in this paper,
which can significantly reduce the search space of query
plans. Making a core subgraph a root of a query plan is also a
heuristic approach to reduce the search space of query plans.
The intuition behind the heuristic approach is to reduce
the amount of intermediate results generated from the join
operations in non-core subgraphs by processing FK-FK joins
on fact tables at the last step in the query plan.
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Algorithm 1: QueryPlanning

Input: join graph G
Output: query plan P*

1 core « find a core subgraph in G;

[N}

{Di} « find possible decompositions in G;

3 foreach D; € {D;} do

4 P; « make a query plan tree having core as a root;
5 foreach G; € {D;} do

6 Sj « make a join subtree from Gj;

7 make S; a child of P;;

8 end

9 ordering {S;};
10 end

11 P* « pick the best plan among {P; };

12 Return P*;

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Line 6 in Algorithm 1. In detail, we call the below Algorithm 2
at Line 6 in Algorithm 1 by considering G; as the input of
Algorithm 2 and considering the output P* of Algorithm 2
as S;. In Algorithm 2, Line 1 generates a conventional query
plan P,q (e.g., left-deep join tree) for G;, which is done by
the query planning method of the base system (e.g., OmniSci
for SPRINTER). If G; has no core subgraph, then Algorithm 2
returns the conventional query plan as output. If G; has one
or more core subgraphs, Line 3 generates a query plan Py,
having a n-ary join operator as a root node for G;, which
is done by Algorithm 1. Then, Line 4 estimates the cost of
P,14 and the cost Py, which will be explained in detail in
Section 6. After comparing both costs, only the plan having
the lower cost is returned as output.

Figure 6 shows the two possible query plan trees generated
from the above two decompositions D; = {core, G, G,, G3}
and D, = {core, G1}. Each binary join operator in Figure 6
corresponds to a green edge in Figure 5. In contrast, each
root n-ary join operator in Figure 6 corresponds to a set of
blue edges {es, es} in Figure 5. We note that a relation shared
among core or non-core subgraphs appears multiple times
in a query plan. For example, C appears three times in Fig-
ure 6(a) since it is shared among three subgraphs {Gy, G;, G5}
in Figure 5. When comparing two query plans in Figure 6, we
can say the plan P; usually has a lower cost than the plan P,
since P; scans a dimension table C two more times, whereas
P, scans two fact tables SR and CS one more time.

{eq.es} {eg.e5}

€1
SR2 CS2

I VSR C2CS C3

(a) Query plan P4 (b) Query plan P,

Figure 6: Query plans for the motivating query.

4.2 Query of multiple n-ary join operators

In this section, we explain the query planning method when
there are multiple core subgraphs in a query. We denote the
number of core subgraphs as N¢ore. A naive query planning
method for such a query is to regard a specific core in a
join graph as the only core in the join graph and applies the
method explained in Section 4.1 to the join graph. A better
planning method would be the generalization of Algorithm 1
by applying Algorithm 1 to all non-core subgraphs recur-
sively. For the generalized version, we only need to modify
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Algorithm 2: QueryOptimization

Input: join graph G
Output: query plan P*
P,1q <« QueryPlanning(G) of the base system;
if G contains at least one core subgraph then
Ppew «— QueryPlanning(G);
if cost(Ppew) < cost(P,;4) then
‘ P* « Ppew; // plan having n-ary join op.

// Algorithm 1

else
‘ P* « Pg,14; // conventional plan(e.g. left-deep)
else
| P* < Poa:
Return P*;

I - R SR

=
5]

4.3 Search space

We can calculate the number of possible query plans for a
query in our approach. In general, there are N;,,.(G) core
subgraphs in a join graph G, and the number of decomposi-
tions depends on which core subgraph is selected as a root
node. We denote the number of decompositions when hav-
ing a core subgraph C; as a root node as Ng¢m,(C;). If Line 6
in Algorithm 1 always uses the conventional plan for a sub-
graph, each decomposition would generate a single query
plan. Thus, we can calculate the number of possible plans
having a single n-ary join operator (as a root node) generated
by the naive method as in Eq. 1.

Neore(G)

Nnaive(G) = Ndcmp(ci)
i=1

(1)

If Line 6 in Algorithm 1 uses Algorithm 2, each decom-
position could generate multiple query plans. For a specific
decomposition D;j (1 < j £ Ngemp(C;)), we assume there
are Ny,p4(D;) non-core subgraphs. For example, in Figure 6,
Nsubg(D1) = 3, and Ng,p4(D;) = 1. For each subgraph Gy,
there exists Nyecyr(Gk) query plans. Thus, we can calculate
the number of possible plans generated by the generalized
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method, which can have up to N,o,.(G) n-ary join operators,

as in Eq. 2.
Ncure(G) Ndcmp(ci) Nsubg(Dj)

Nrecur(G) = Z Ndcmp(ci) Z 1_[ Nrecur(Gk)
i=1 Jj=1 k=1

()
In Figure 6(a), it is possible to make 3! = 6 query plans
depending on the order of join subtrees. In Eq. 2, we do not
take into account the order among join subtrees because
a total processing time of the join subtrees are the same,
regardless of the order. We will explain it in detail in Section 5.
Thus, we can use any order for join subtrees at Line 9 in
Algorithm 1.

5 n-ARY JOIN PROCESSING METHOD

In this section, we present the n-ary join processing method
of SPRINTER. A naive method for processing an n-ary join
operator having a set of child join subtrees {Sy,---,S,}
would be performing the following six steps.

e Step 1: Evaluate {S,--- ,S,} one by one.
e Step 2: Calculate the necessary statistics for the results

of {S1,---,Sn}.
e Step 3: Estimate the cost of each global order of join
variables.

e Step 4: Choose the best global variable order.

o Step 5: Sort the results of {Sy,---,S,} by the global
order.

o Step 6: Merge join on the n sorted relations.

For an n-ary join operator, the number of possible order-
ings of the children becomes n! in principle. We assume that
the children of an n-ary join operator are evaluated from left
to right. For the naive method, the elapsed time to process an
n-ary join operator becomes the same regardless of the pro-
cessing order of the children. Figure 7(a) shows an example
timeline to evaluate three join subtrees {5, Sz, S3} according
to the above six steps. In the case where the n-ary join oper-
ator has relations instead of join subtrees as its children, e.g.,
SR2 and CS2 in Figure 6(b), we regard the relations as S, and
Ss, respectively. We denote the elapsed time of evaluating
Si as T,pq1(Si) and the elapsed time of sorting its result as
Tsort(Si). We assume that Teyq1(S;) = Tsore(Si)(1 < i < 3)
for simplicity and T,141(Si) < Tewar(Sj) (i < j). Steps 2-4 are
done at the time #; in Figure 7(a), which determines a cer-
tain global order among join columns for applying the TJ
algorithm. Step 5 sorts each result according to the global
order, and Step 6 is done at the time t, by using the TJ algo-
rithm described in Section 2.2. We can know that the total
elapsed time would not be changed in Figure 7(a) even if
the evaluation order of {Si,S;, S5} is changed, or even if
Tevat(Si) > Tsort(Si), or Tepar(Si) < Tsore(Si)-

In the naive method, T,,4;(S;) and Tsor+(S;) cannot overlap
each other due to a kind of synchronization barrier at the
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Figure 7: Timelines of the evaluation of three join sub-
trees {51, Sz, S3} in Figure 6(a).

time t;, and thus, it is hard to reduce the total elapsed time
much even if we exploit GPU for the sorting step. Thus, we
use a modified method for processing an n-ary join operator,
which consists of the following four steps.

e Step 1: Estimate the cost of each global order of join
variables.

e Step 2: Choose the best global variable order.

e Step 3: Overlap evaluating {S, - - - , S, } with sorting
their results.

e Step 4: Merge join on the n sorted relations.

Figure 7(b) shows the timeline of the modified method. In
Steps 1-2, it first determines the global variable order without
calculating the statistics for the results of {Sy,- - - , S, } (at the
time t;). We will explain how to determine the global order
for SPRINTER in detail in Section 5.1. Then, in Step 3, it
overlaps evaluating S; using CPU and sorting the result of S;
using GPU (i # j). In this method, the total elapsed time is still
not changed in Figure 7(b) regardless of the processing order
of {S1, Sz, S5}, and also, not changed regardless of whether
Tevat(Si) > Tsore(Si)s of Tewar(Si) < Tsore(Si)-

We can further reduce the total elapsed time than in Fig-
ure 7(b). SPRINTER can exploit the pipelining technique for
evaluating each child join subtree since its base system, i.e.,
OmniSci, is the one based on the pipelining technique. Since
SPRINTER can use both CPU and GPU simultaneously, and
at the same time, use the pipelining technique, evaluating S;
and sorting the result of S; can overlap with each other even
if i = j. Figure 7(c) shows the timeline when both use CPU
and GPU simultaneously and enables the pipelining tech-
nique. We assume that the sizes of the intermediate results
of Sy, S; and S5 are one, two and three times larger than the
size of data that can be processed in GPU at a time, respec-
tively. In the figure, the red dotted lines mean host (i.e., main
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memory) to device (i.e., GPU memory) copying, denoted as
H2D copy. For S; and Ss, the partial intermediate result is
collected through the pipelining technique and chunk-copied
to GPU memory for being sorted.

Even though we use CPU and GPU simultaneously and
also use the pipelining technique, the total elapsed time is
not changed depending on the processing order of the chil-
dren. We regard To41(S;) + Tsor:(Si) as the cost of the child
S;. Figure 7(c) shows the strategy of evaluating a Lower Cost
child node First (LCF), while Figure 7(d) the strategy of eval-
uating a Higher Cost child node First (HCF). We can see both
strategies are completed at the same time. This tendency
is maintained regardless of whether T,y,4i(Si) > Tsor:(Si),
or Tepai(Si) < Ts0rt(Si). Therefore, we use any fixed strat-
egy (e.g., HCF) for ordering the children of an n-ary join
operator.

5.1 Determination of Global Order

In general, it is a very challenging problem to calculate the
cost of each global join variable order precisely within a
reasonably short time. The existing worst-case optimal join
algorithms also use heuristic algorithms practically to deter-
mine the global order for graph pattern queries [1, 13, 44].
We also present a heuristic algorithm in this paper that can
determine a reasonably good global variable order quickly
for OLAP queries, which we will further improve in future
work.

Algorithm 3: Selecting Global Variable Order

Input: core subgraph core
Output: global variable order W

1 W « join variables (columns) in core;

2 list «— 0;

3 foreachw € W do

4 E,, < a set of edges (join conditions) in core using w;
5 U,, < a set of relations having w;

6 Cw < XReu,, lIRIl; /7 || -1|: cardinality function
7 list « (w, |Ew|, Ca); // |-|: length function
s end

o W « sort list by the descending order of (|Ey,|, Cyy);

10 Return W;

Algorithm 3 shows our heuristic algorithm. Given a core
subgraph, it finds all the join variables and prepares a triplet
(w, |Ey|, Cyy) for each join variable, where w is a join vari-
able, |E,, | the number of join conditions for w, C,, the sum of
cardinalities of the relations having w. For example, Figure 8
shows a core subgraph of TPC-DS Q17, which has three join
variables, item, cust, and ticket. For item, |Ej;em| = 2, and
Citem = ||CS|| + |ISR]|| + [|SS||. Then, the algorithm sorts the
list of triplets by the descending order of (|E,,|, C,,). Here, if
a join variable wy; may tie with another join variable w; in
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terms of (|E, |, C,,), either one can precede the other in the
global variable order. For example, both item < cust < ticket
and cust < item < ticket are allowed. Intuitively, the algo-
rithm chooses a join variable having more join conditions
and potentially more tuples to be processed as higher pri-
ority to reduce the total amount of binary search on sorted
relations. We will show the impact of this approach in Sec-
tion 7.3.
SR.item = SS.item

— — (FK)  (FK) —
CS.item = SR.item e
(FK)  (FK) 3
€ SR.cust = SS.cust
(FK) _ (FK)
CS SR e, SS
CS.cust = SR.cust
(F)__(FK) SR ticket = SS ticket
€2 (FK)  (FK)
L | L | €s L

Figure 8: A core subgraph of TPC-DS Q17.

5.2 Strategy for Sorting

In this section, we present our strategy of selecting a specific
sorting algorithm for the result of each child join subtree.
Figure 9 shows the strategy considering the following three
factors: availability of GPU, the size of data to be sorted, and
the number of sorting columns. First, if GPU is not available,
SPRINTER uses CPU sorting, in particular, a non-comparison
based algorithm if the number of sorting columns is only one,
but otherwise a comparison-based algorithm, as explained
in Section 2.1. Second, if the data to be sorted can fit in
GPU memory, SPRINTER uses a non-comparison based or
comparison-based GPU sorting algorithm depending on the
number of sorting columns. Third, if the data to be sorted can-
not fit in GPU memory, we need to select a sorting algorithm
carefully due to the issue of lack of good implementations
for GPU sorting. To the best of our knowledge, the imple-
mentation of a comparison-based algorithm for GPU [7] is
only slightly faster than that for CPU [37].

Does the relation
have two or more
join columns?

Does the
relation fitin
GPU memory?

Does the relation
have two or more
join columns?

Is GPU
available
for sorting

heterogeneous
sorting

Does the
relation have
two or more

join columns?

Figure 9: Strategy for selecting sort algorithms.

If a relation to be sorted has multiple sorting columns
and is larger than GPU memory, a typical method would
split the relation into subarrays, sort each subarray using
the comparison-based algorithm for GPU, and merge the
subarrays using CPU. However, the cost of merging sorted
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subarrays can be quite large since the column values in each
sorted subarray are duplicated and not ordered in terms of a
specific sorting column as the index of the sorting column
increases (e.g., 3rd, 4th). The combination of sorting using
GPU and merging using CPU is actually slower than sorting
using CPU in many cases, and thus, we use CPU sorting for
the case in red-lined box, which can be changed if the per-
formance of the comparison-based GPU sorting algorithm is
improved later. If a relation has only a single sorting column,
we just use heterogeneous sorting in Section 2.1 since there
is a very fast implementation of a non-comparison based
algorithm for GPU, and the cost of merging subarrays is not
so large. We will show experimental evaluation of each case
in Figure 9 in Section 7.

Since SPRINTER uses the columnar layout like other mod-
ern OLAP systems, it maintains both a set of join column
arrays and a tuple ID vector (tidVec) for each S; (1 < i < n),
where the former is used for sorting each S; and joining {S;},
and the latter used for tuple reconstruction. The maximum
number of tuples that can be sorted in a single GPU at once
depends on the implementation of sort algorithm used. For
example, when we sort the result of S; having a single 4-byte
join column and 4-byte tuple ID with NVIDIA GTX 1080 ti
of 11 GB memory, we can sort about 1.4 and 0.7 billion tuples
using in-place and out-of-place sort, respectively.

5.3 Merge Join of Sorted Relations

For an n-ary join operator having n join subtrees {Sy, - - - , Sy },
since we have n sorted results {§1, e ,SA,,} by sorting the
result of each join subtree, we can easily perform merge
join using the TJ algorithm. Figure 10(a) shows an exam-
ple of merge join for the ternary join operator of the core
subgraph in Figure 8. For simplicity, we denote the columns
item, cust and ticket as i, c and t, respectively. We assume
the global order is i < ¢ < t. SPRINTER scans {CS, SR, SAS}
on the first join variable i and assume the current pointer
is i = 2(blue arrow). Then, it performs a residual query
Q’(c,t) = CSiz(c), SRi=s(c, ), SSi=s(c, t) recursively on
the second join variable ¢, which can find at least one match-
ing, i.e., ¢ = 4(green arrow). Thus, it performs a narrower
residual query Q”’(t) = CASizz,c:4('), SARizz,C:A;(t), SASi:270:4(t)
recursively. The residual query Q" (¢) finds two matching
tuples {(2,4,1), (2,4,1)}. Similarly, it can find four more
matching tuples of (2, 4, 1) by moving the green pointer in
CS. In this way, we can process a core subgraph having many
FK-FK joins without generating a large amount of interme-
diate results.

One may think about another merge join method that
sorts CS, SR, and SS only by i and so reduces the sorting
cost. It however may significantly increase the merge join
cost and so degrade the overall performance. Figure 10(b)
shows such an example where the values in column c are
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Figure 10: Example of merge join for the core sub-
graph in Figure 8.

Table 2: Summary of symbols.

symbol | description
Di filtering predicates on a relation R;
F; result relation after applying p; to R;
selectivity of p; (0 < f; < 1,
fi 0 means no tuple pass, 1 all tuples pass)
dup, average number of elements having the same
! | key in a hash table for F;
u(w) | number of relations related to a join variable w
N min{[ISwyll, - 1Sy 1}
Nopax | max{[ISwlls- - 5 Sy}

not ordered, and we assume CS and SR are the same with
Figure 10(a). When performing the residual query Q’(c, t) =
CSiz(c), SRi=z(c, t), SSi=(c, t), we have to scan the residual
relation SS;—; on the column ¢ sequentially instead of doing
binary search. Thus, it is important to sort all the relations
in a core subgraph according to all join variables.

6 COST MODEL FOR QUERY
OPTIMIZATION

A query processing using n-ary join operators may not al-
ways achieve better performance than the conventional query
processing methods using only binary join operators. Thus,
we make SPRINTER generate a query plan containing n-ary
join operators only when it is beneficial in terms of the cost
model. Given a query Q, Algorithm 2 considers the original
plan P,;4 and the new plan P,.,,. Thus, we establish both
cost models cost(Pyew) and cost(P,;q) in order to determine
whether cost(Pyeqw) < cost(P,1q). In particular, we establish
the cost model for cost(P,;4) with respect to the base sys-
tem (i.e., OmniSci). We consider the number of tuples (or
elements in a hash table) accessed during query processing
as the measure of the cost. Table 2 summarizes the symbols
used in this section.

6.1 Cost model of the base system

We consider that a query plan P4 consists of M — 1 binary
join operators for M relations. Each input relation R; may
have its own set of filtering predicates p;, and we consider
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the result relation F; after applying the predicates to the
relation (1 < i < M). We consider each binary join operator
of either PK-FK join or FK-FK join is evaluated using main-
memory hash join algorithm, which is common not only in
OmniSci [33] but also in other in-memory query processing
systems [5, 8, 19, 28, 50]. We assume that query processing
probes each tuple of the left-most relation, i.e., F; against
the set of hash tables built from the remaining relations
{Fil2 < i £ M} in a pipelined manner. Eq. 3 shows the
cost function for P,;4, where build(F;) is the cost function
for building the hash tables (Eq. 4), and probe(F;) the cost
function for probing the tuples of F; (Eq. 5).
M

cost(Pora) = ) build(F;) + probe(F)) 3)
i=2
build(F;) = « - ||Fi| (4)
M i
probe(Fy) = > (IRl - [ | fi-1 - dupy) (5)
i=2 j=3

In Eq. 4, k is a constant value indicating the number of full
scans on the relation F; for building the corresponding hash
table. We use k = 2 since our base system uses a common
technique of a prefix sum over a histogram on a join key [19]
which requires two full scans on a relation. The value x
depends on the base system used. In Eq. 5, we consider that
the term [] fj_; becomes 1 when j > i. For example, the cost
of probing of F; against F, (i.e., i = 2) becomes ||F;|| X dup;
since the term H;':s fi-1 = 1. However, the term becomes
itself when j < i(e.g., Hj-:é f2). Without loss of generality,
we can assume that each tuple of F; is compared with dup,
elements in the hash table for F, regardless of the type of the
hash table (e.g., open addressing, separate chaining). After
probing against F,, we can assume that a total of ||Fi|| - f
tuples survive and are probed against F5. That is, each of
[|F1|| - f2 tuples is compared with dup; elements on average
in the hash table for F;. After probing against Fj, a total of
||F1]| - f2 - f5 tuples survive, and each tuple is compared with
dups elements on average in the hash table for F,. In this
way, we can aggregate the number of elements accessed in
the hash tables on the pipeline as in Eq. 5.

6.2 Cost model of SPRINTER

In general, a query plan P,,, consists of n-ary and binary
join operators for M relations. We assume there is at least one
n-ary join operator in Pp,, and do not need to generate Py,
otherwise. In particular, P,.,, has an n-ary join operator as
a root according to the query planning method in Section 4.
We denote the n-ary join operator as O and assume that
O has the join subtrees as its children {S;|1 < i < n}. We
note that, if a join subtree S; also has one or more n-ary join
operator, then it also has the operator as a root due to the
query planning method in Section 4. Thus, we can define the
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cost function for Py, recursively as in Eq. 6, where cost(S;)
becomes Eq. 3 if S; has no n-ary join operator and becomes
Eq. 6 otherwise.

n
cost(Ppew) = Z cost(S;) + nary(O)

i=1
Eq. 7 represents the cost of n-ary join processing, which
consists of the sorting cost for the results of n join subtrees
and the join cost using the TJ algorithm. SPRINTER uses
different sorting algorithm according to the sorting inputs,
i.e., the number of sorting columns and the size of a table,
and we omit the analysis of the costs of those algorithms

since they are already well-known in literature.

n
nary(0) = () sort(Sy)) + TJ(0)

i=1
If w; < wp < -+ < wg is determined as a global variable
order for the n-ary join operator O, Eq. 8 shows the cost of the
TJ algorithm for merging n sorted relations {$;|1 < i < n}.
We denote the number of relations related to a specific join
variable w as u(w). For example, u(item) = 2, and u(ticket) =
1 in Figure 8. We can consider the relation having the mini-
mum cardinality among all the relations {Sq), - - - , Squ(w)) }
related to the join variable w and denote its cardinality as
N .Likewise, we can consider the relation having the max-
imum cardinality for w and denote its cardinality as N,/ ..
Then, the cost of the TJ algorithm for a single join variable

w becomes Eq. 9, which is also summarized in [44].

(6)

(7)

L
TJ(0) = ) search(O,w) (8)
w=1
In Eq. 9, the term (1 +log(N,y,,,./N}. ) indicates the amor-

tized cost of binary searches for the next key value. Since
TJ searches relations according to the global variable order
consecutively, the total cost of T] becomes Eq. 8.

search(O,w) = u(w) - N, - (1 +log(N}, ... /[N.:))  (9)

7 EXPERIMENTAL EVALUATION

In this section, we present experimental results in two cate-
gories. First, we compare SPRINTER with the existing OLAP
query processing systems in terms of the elapsed times for
complex OLAP queries in the TPC-DS benchmark. Second,
we show the characteristics of SPRINTER. In detail, we em-
pirically validate the strategy of selecting a sorting algorithm
described in Section 5, the cost model proposed in Section 6,
and the performance of sort algorithms.

7.1 Experimental Setup

Queries and datasets: There are a total of 26 TPC-DS queries
having at least one FK-FK join in the TPC-DS benchmark [30].
Among the queries, we found that only a total of eleven
queries can be evaluated commonly in all the OLAP systems
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compared, and the remaining queries are not supported by
at least one of OLAP systems with parsing errors. Thus, we
use the eleven queries to compare the systems. We note that
SPRINTER shows the same performance with the base sys-
tem (e.g., OmniSci) for the queries having no FK-FK joins (e.g.,
99 - 26 = 73 queries for TPC-DS) since SPRINTER uses the
same query plans with the base system for such queries.

To evaluate the characteristics of SPRINTER, we usually

use synthetic queries which are generated by modifying the
motivating query in Section 3 and evaluate them on the
TPC-DS database. For datasets, we use the TPC-DS database
from SF=100 (100 GB) to SF=400 (400 GB), which are the sizes
widely used in the previous studies [25, 46].
Environments: We conduct all the experiments on a single
machine equipped with two Intel Xeon 10-core CPUs, 512 GB
main memory, and a single NVIDIA GTX 1080 Ti GPU of
11 GB device memory. The operating system used is CentOS
7.5.
Systems compared: The OLAP systems compared with
SPRINTER are classified into two types: CPU-based sys-
tems (e.g., System-X) and co-processing systems (e.g., Om-
niSci). All the systems are based on the columnar storage
layout. We note that every system is set up to use both main
memory and GPU device memory (only for co-processing
systems) as much as possible. Table 3 summarizes the fea-
tures of the systems used in the experiments.

Table 3: Summarization of the systems compared.

Query
S}t/stem evaluation | Plan shape
ype model
System-X operator-
MonetDB CPU at-a-time left-deep
Actian Vector inelined
System-Y pPip binary bushy
System-Z Co- operator-
CoGaDB processing at-a-time left-deep
OmniSci (CPU+GPU) pipelined
operator-
SPRINTER AHmE | -ary bushy
pipelined

For the CPU-based systems, System-Y is one of the state-of-
the-art commercialized OLAP database systems with a sup-
port of index-driven query execution and query optimization
techniques such as bloom filter for hash join and cost-based
query planner, which is similar to System-X. It however gen-
erates a query plan of binary bushy tree, which is one of
major difference from System-X. In addition, System-Y pro-
cesses a query plan in pipelined manner and supports code-
generation for query execution. We use the latest releases of
System-X and System-Y for experiments. We also compare
SPRINTER with the well-known vectorized engines, Mon-
etDB [9] (v11.31.13) and Actian Vector [51] (v5.1), where the
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former uses the operator-at-a-time model, but the latter the
pipelined model for query evaluation. For the co-processing
systems, System-Z is the state-of-the-art commercialized
OLAP database system exploiting GPU, and we use its latest
release for experiments. We also use two open-source co-
processing systems for evaluation, OmniSci [33] (v4.5.0) and
CoGaDB [10] (v0.4.2). We denote the version of SPRINTER
using only CPU as SPRINTER(C) and the one of SPRINTER
using both CPU and GPU as SPRINTER(G). Since SPRINTER
executes an n-ary join operator in an operator-at-a-time
manner although it executes each join subtree in a pipelined
manner, we describe its query evaluation model as a combi-
nation of operator-at-a-time and pipelined.

7.2 Comparison of performance

Figure 11 shows the comparison results of SPRINTER(C) and

SPRINTER(G) with the existing OLAP systems described in

Section 7.1.In the figure, 0.0.M. means a failure of query eval-
uation due to out-of-memory. T.O. means a timeout (exceed

1,800 seconds). M.E. means a failure of query evaluation due

to main-memory related errors such as segmentation fault

and bad allocation. Y-axis is log-scale in the figure. We use a

dataset of SF=100 since a bigger dataset incurs a lot of 0.0.M.
in many systems. For each system and each query, we run

the query five times to warm up the system and report the

best elapsed time.

Comparison with CPU-based systems: Figure 11(a) shows
the comparison results with the CPU-based systems. We first

note that only SPRINTER executes all eleven queries suc-
cessfully, but other systems fail in at least one query due to

0O.0.M. from a large amount of intermediate results or T.O.
from a huge amount of probe cost, explained in Section 3.
In addition, both SPRINTER(C) and SPRINTER(G) outper-
forms all the systems compared for the most of queries tested,
which is due to their different query planning and different

join processing. For the queries commonly executed by all

the systems compared, i.e., Q37, Q64 and Q95, SPRINTER

achieves the best performance among the systems. In par-
ticular, for Q64, SPRINTER(G) improves the performance

compared with System-Y, System-X, MonetDB and Actian

Vector by 6.6, 7.4, 20.1, and 5.1 times, respectively.

The performance gap between SPRINTER(C) and SPRIN-
TER(G) is not large since the data size is relatively small (SF=
100). We note that the current SPRINTER does not use ad-
vanced query optimization techniques that System-X and
System-Y use, since its base system, OmniSci, does not sup-
port them yet. Thus, the performance of SPRINTER can be
further improved by applying the optimization techniques
to OmniSci or SPRINTER.

Comparison with co-processing systems: Figure 11(b)
shows the comparison results with the co-processing sys-
tems. SPRINTER outperforms all the co-processing systems
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Figure 11: Performance comparison using TPC-DS benchmark queries (SF=100).

compared for all queries tested without any failure. Com-
paring with CPU-based systems, the existing co-processing
systems have much more failures and usually worse perfor-
mance when processing the same query. It is because the
co-processing systems usually do not use advanced query
optimization techniques and are not mature enough to pro-
cess complex queries efficiently in terms of exploiting GPU.
For example, OmniSci outperforms System-X in Figure 4
since the motivating query has high f; values (i.e., closed to
1) for its relations. However, the TPC-DS queries in Figure 11
usually have low f; values (i.e., closed to 0), and so, System-X
equipped with a support of index-driven query execution
and query optimization techniques outperforms OmniSci.
OmniSci can execute only two queries, Q37 and Q97, al-
though SPRINTER using OmniSci as the base system can
execute all eleven queries. OmniSci and CoGaDB first try to
execute a given query using GPU. However, if the attempt
fails, OmniSci and CoGaDB execute the query using CPU and
main memory. This two-step approach increases the elapsed
times when the data required to execute the query cannot
fit in GPU memory. In addition, OmniSci executes the query
in an pipelined manner, while CoGaDB in an operator-at-a-
time manner. Thus, CoGaDB tends to fail due to O.0.M. from
large intermediate results and lack of query optimization
techniques. For OmniSci, even when executing the query us-
ing main memory, it tends to estimate the amount of memory
required incorrectly if the query becomes more complex, and
so, the left-deep join tree becomes deeper. Thus, OmniSci
tends to fail due to M.E. from incorrect memory allocation
or T.O. from a huge amount of probe cost for FK-FK joins
between fact tables. In contrast, although SPRINTER is based
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on OmniSci, it has no failure and significantly improves the
query performance. The left-deep join subtrees in a query
plan generated by SPRINTER is much smaller than the join
tree by OmniSci, and at the same time, there is almost no
fact table used for building a hash table, as shown in Sec-
tion 3. Such small and simple join subtrees can be sufficiently
evaluated by OmniSci without failure of M.E. In addition,
the probe cost of SPRINTER is much smaller than that of
OmniSci due to n-ary join processing, and so, there is no
failure of T.O. For Q37 and Q97, SPRINTER(G) improves the
performance compared with OmniSci by 88.8 and 1.5 times,
respectively.

Different from OmniSci and CoGaDB, System-Z uses both
main memory and GPU memory for query processing from
the beginning and supports more query optimization tech-
niques. Thus, it can execute six queries among eleven ones
without O.0.M. However, since it executes a query in an
operator-at-a-time manner and still does not support many
query optimization techniques of the CPU-based systems, it
tends to fail in many queries due to T.O. or show worse per-
formance than SPRINTER as well as the CPU-based systems.

7.3 Characteristics of SPRINTER

Validation of cost model: We validate the cost model in
Section 6 empirically. In Algorithm 2, we determine whether
to use a conventional plan of left-deep join tree (denoted as
left-deep) or a more general plan having n-ary join opera-
tions (denoted as n-ary bushy) based on the cost model. Thus,
it is important that the cost model coincides with the actual
performance as much as possible.
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Figure 12: Validation of the cost model.

Figure 12 shows the estimation based on the cost model
and the actual performance result in a query space. For the
query space, we modify the motivating query in Figure 3 in
terms of (1) the number of FK-FK joins, (2) filtering selectiv-
ity (i.e., f;), and (3) the average number of elements having
the same key in a hash table (i.e., dup;). The number of FK-FK
joins in the motivating query is two (Figure 12(a)), and the
number becomes three by connecting (joining) a new fact
table CR with CS and C via the cust column (Figure 12(b)).
We vary the selectivity f; on Y-axis between 0.0001 and 1.0
by adjusting f; for C. We also vary dup; on X-axis by replac-
ing C with different dimension tables such as CD, CA, I, and
HD via different join columns. For example, if we use CD in-
stead of C and join CD with fact tables via the cdemo column,
{dup;} of fact tables approximately become six (dup; = 6). In
this case, we vary the selectivity f; on Y-axis by adjusting f;
for CD. Similarly, we set dup; = 11 using C, dup; = 19 using
CA, dup; = 44 using I, and dup; = 126 using HD. Figure 12
shows the results, where red color cells indicate a left-deep
plan achieves better performance than an n-ary bushy plan,
and blue color cells indicate the opposite situation. In the
figure, n-ary bushy plans are better than left-deep plans in
terms of both estimation and actual result in most of the
cells in the query space. We note that the estimation usually
coincides with the actual result (90% match).

Validation of the heuristic algorithm for global vari-
able order: We validate the effectiveness of the heuristic
algorithm in Algorithm 3 using three TPC-DS queries, Q17,
Q25 and Q29 (SF=100). In the left table in Figure 13, E,, and
C,, are the statistics used in Algorithm 3, and Rank means
the rank when sorting the variables by the descending order
of (|E,|, Cy). The core subgraphs of all three queries tested,
Q17, Q25 and Q29, consist of three join variables, C, I, and T.

There exist 3! = 6 orders for the three variables, and the
right figure in Figure 13 shows the query processing time
of six different orders for the three queries. According to
our heuristic algorithm, I < C < T and C < I < T should
show the best performance, while T < I < Cand T < C <1
the worst performance. Such predicted results coincide with
the actual results in the figure. That means our heuristic
algorithm for selecting a good global variable order is simple,
but effective.
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Figure 14: Results of performance breakdown.

Performance breakdown: Figure 14 shows the results of
micro evaluation of SPRINTER using three TPC-DS queries
Q17, Q25, and Q29. There are five possible configurations
based on three major techniques proposed: n-ary join pro-
cessing (shortly, N-ary), selecting a global variable order in
Algorithm 3 (shortly, V.0.) and overlapping T, ,; with Tsors
(shortly, O.E.). In Figure 14, no V.O. option means selecting a
global variable order randomly without using Algorithm 3.
No O.E. option means evaluating join subtrees and then sort-
ing their results as in Figure 7. In the figure, the fifth bar, ie.,
no N-ary, no V.O., and no O.E., shows the performance of
the base system, i.e., OmniSci.

In the figure, the N-ary option improves the query perfor-
mance in Q17 and Q25. The reason why the fourth bar (i.e.,
N-ary, but no V.O and no O.E) shows worse performance than
the fifth bar (i.e., base system) in Q29 is due to a poor global
variable order randomly selected. The result means that not
only n-ary query processing but also selecting a good global
variable order is important in terms of performance. Between
the second (i.e., V.O, but no O.E) and third (i.e., O.E, but no
V.0) bars, the second bar improves the performance more
significantly than the third bar, against the fourth bar (i.e.,
no O.E and no V.0). The result means selecting a good global
variable order is more important than overlapping T, With
Tsor¢- Overall, only N-ary and V.O options without O.E could
outperform the base system for all queries tested. The O.E
option just further improves the performance.

Sorting performance: We validate the strategy of select-
ing join algorithms empirically. Figure 15 shows the perfor-
mance evaluation of sorting algorithms in Table 1. When
sorting a single column in Figure 15(a), CPU-radix is faster
than CPU-merge, and GPU-radix is faster than GPU-merge,
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as shown in Figure 9. When sorting multiple columns in Fig-
ure 15(b), GPU-merge is only slightly faster than CPU-merge,
as explained in Section 5.2. When sorting a single-column
relation larger than GPU memory in Figure 15(c), heteroge-
neous sorting is much faster than CPU-radix. Overall, the
experimental result verifies the strategy in Figure 9.
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Figure 15: Validation of strategy for sorting.

8 RELATED WORK

Multi-way join processing: Recently, the worst-case opti-
mal (WCO) join algorithms are proposed to evaluate multi-
way join occurred in a graph pattern query [31, 44]. They
provide theoretically a tighter bound in terms of the worst-
case size of multi-way join results by performing a kind
of set-intersection among multiple sorted relations. Some
of them [1, 31, 44] require to build a large-scale index for
a global variable order before join. They are useful for a
graph pattern query having a few global variable orders on
a small number of relations. However, it is challenging to
apply them to ad-hoc OLAP queries since each OLAP query
has many possible global variable orders on a large number
of relations.

A few studies [2, 13, 49] discuss multi-way join processing
on distributed environments. Their optimization goal is min-
imizing the communication cost by repartitioning multiple
join relations together, instead of shuffling a pair of input
relations of a join operation at a time.

Query planning for WCO join algorithms: DunceCap [36,
43] focuses on generating a hypertree query plan for WCO
join algorithms. It exploits the connection between the mini-
mum hypertree width of an input query and the size of query
result. Here, the width means how far a given query is from
acyclic query [32] or the degree of cyclicity of the corre-
sponding hypergraph [38]. A plan tree having the minimum
width guarantees the minimum worst-case output size, and
thus, its query performance is proportional to the width [4],
which is called AGM-bound.

DunceCap is useful for cyclic queries (e.g., triangle query)
on graph dataset since it exploits a hypergraph capturing

2068

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

the cyclicity existing in a query. It is however not applicable
for OLAP queries since they are usually acyclic. For instance,
the motivating query in Section 3 has no cycle in the corre-
sponding hypergraph since C1, C2, and C3 are regarded as
different relations in hypergraph. There is no cyclic query in
the TPC-DS benchmark. For such acyclic queries, the concept
of hypertree width cannot provide an insight to determine
the best query plan. Moreover, filter predicates on large fact
tables may significantly reduce the size of join result and
thus can become far from the worst-case bound.

Co-processing approach for OLAP query: Recently, the
co-processing approach for OLAP query processing has been
actively studied in database community [14, 15, 17, 35, 42].
They can be categorized into two groups: (1) accelerating
database kernels [15, 42] and (2) end-to-end query evaluation
engines [14, 17, 35]. The major issue of the co-processing
approach is the GPU memory limitation, which may incur
high I/O overhead due to frequent data transfer between
main memory and device memory [14] or cause a failure at
runtime due to out of memory.

9 CONCLUSIONS

In this paper, we have proposed a fast n-ary join query pro-
cessing method for complex OLAP queries having FK-FK
joins. It generates a query plan containing n-ary join oper-
ators, if it is better than the conventional left-deep binary
join tree based on our cost model. The plan can significantly
reduce the probe cost by placing a FK-FK join on fact tables
into an n-ary join operator. We also have proposed an effi-
cient n-ary join processing method which is based on the TJ
algorithm and heuristic algorithm selecting a good global
variable order. We have implemented the prototype system
SPRINTER that our proposed methods are integrated into the
open-source in-memory OLAP system, OmniSci, across all
relevant layers and modules. Through experiments using the
TPC-DS benchmark, we have shown that SPRINTER outper-
forms the state-of-the-art OLAP systems even without using
GPU sorting, although its base system OmniSci achieves the
second worst performance among them.
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