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Simultaneous emulation of synaptic and intrinsic
plasticity using a memristive synapse
Sang Hyun Sung1, Tae Jin Kim1, Hyera Shin1, Tae Hong Im1,2 & Keon Jae Lee 1✉

Neuromorphic computing targets the hardware embodiment of neural network, and device

implementation of individual neuron and synapse has attracted considerable attention. The

emulation of synaptic plasticity has shown promising results after the advent of memristors.

However, neuronal intrinsic plasticity, which involves in learning process through interactions

with synaptic plasticity, has been rarely demonstrated. Synaptic and intrinsic plasticity occur

concomitantly in learning process, suggesting the need of the simultaneous implementation.

Here, we report a neurosynaptic device that mimics synaptic and intrinsic plasticity con-

comitantly in a single cell. Threshold switch and phase change memory are merged in

threshold switch-phase change memory device. Neuronal intrinsic plasticity is demonstrated

based on bottom threshold switch layer, which resembles the modulation of firing frequency

in biological neuron. Synaptic plasticity is also introduced through the nonvolatile switching of

top phase change layer. Intrinsic and synaptic plasticity are simultaneously emulated in a

single cell to establish the positive feedback between them. A positive feedback learning loop

which mimics the retraining process in biological system is implemented in threshold switch-

phase change memory array for accelerated training.
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The intellectual capabilities of the human brain such as
learning and memory emerge from the complex network of
nearly a hundred billion neurons interconnected with

synapses. A neuron combines the pre-synaptic input stimulus to
fire electrical impulses, while a synapse connects adjacent neurons
to transmit the signals throughout the network. Depending on the
previous stimulus experiences, the function of neurons and
synapses can be modified to reorganize the neural pathways.
Synaptic plasticity, the ability of a synapse to adaptively change
the connection strength, is well known for its contribution to
learning and memorizing. Recently, numerous cellular and
molecular studies reported that neurons not only participate in
information processing, but also promote memory formation
through intrinsic plasticity, which modulates neuronal
excitability1–3. The synaptic plasticity and neuronal intrinsic
plasticity occur concomitantly in all major forms of learning,
allowing the brain to perform intelligent tasks and probabilistic
processing with high efficiency4,5.

Inspired by the cognitive human brain, neuromorphic com-
puting targets hardware embodiment of the biological neural
network for the realization of artificial intelligence (AI)6–8. Device
implementations of individual neurons and synapses have been
widely investigated due to their excellent energy efficiency and
scalability compared to CMOS-based approaches9. The develop-
ment of artificial synapses has been greatly accelerated by the
advent of memristor, which shows hysteretic resistance switching
characteristics10,11. Both short- and long-term synaptic plasticity
have been successfully emulated by nonvolatile memristors,
owing to the strong resemblance of resistive switching behavior to
synaptic plasticity12–15. Artificial neurons have also been
demonstrated using volatile memristors, emulating neuronal
models ranging from a bioplausible integrate-and-fire model to a
biophysical Hodgkin-Huxley (HH) model16–18.

The integration of artificial neurons and synapses is essential
for the development of neuromorphic intelligent computers with
high-level cognitive functions19. Recently, memristive neural
networks capable of pattern recognition and simple decision-
making have been reported, showing superior performance over
the conventional von Neumann architecture20–24. However, very
few studies have demonstrated the emulation of intrinsic plasti-
city in an artificial neuron despite of important role in learning
and memorizing25,26. In addition, the synergistic interaction
between intrinsic and synaptic plasticity should be involved in
various forms of learning such as classical conditioning, spatial
learning, and retraining4. Although there have been several
reports demonstrate the volatile and nonvolatile switching in a
single device, these researches showed transition from volatile to
nonvolatile switching, rather than a coexistence of both switching
mechanism with neurosynaptic interactions27–29. The imple-
mentation of neuronal excitability and synaptic-weight change in
a single device should be provided for the concomitant solution of
neuroplasticity in brain-inspired cognitive AI.

Here, we report a synaptic device that mimics synaptic and
intrinsic plasticity in a single unit cell for the interactive con-
comitance. An Ag-doped SiO2 TS and Ge2Sb2Te5 (GST)-based
PCM are merged in a stack unit-cell of threshold switch-phase
change memory (TS-PCM) to emulate an intrinsic and synaptic
plasticity simultaneously. The nonvolatile phase transition of
PCM layer is induced by Joule heating of the volatile Ag con-
ductive filament (CF) in TS layer, showing high similarity to the
synaptic weight modulation by neuron firing in a biological
neural network. Due to the fully simultaneous nonvolatile and
volatile resistive switching, both synaptic plasticity and neuronal
intrinsic plasticity are emulated in a single cell of TS-PCM. In
addition, a positive feedback learning loop is established based on
the synergistic interaction of concomitant neuroplasticity. Finally,

memorization and retraining of 4 × 4 patterns are successfully
implemented by adopting the concomitant plasticity and feed-
back learning loop of TS-PCM.

Results
TS-PCM device with neuron-synapse pair structure. TS-PCM is
composed of a top non-volatile PCM layer and a bottom volatile
TS layer without an intermediate electrode to implement mem-
ristive synapse with neuronal plasticity. As shown in Fig. 1a, we
have developed a unique structure where the phase transition of
PCM layer is regulated by the filament formation of TS layer,
which mimics a biological neural network with the synaptic
modulation of neuronal firing. The volatile TS layer is fabricated
by co-sputtering of Ag and SiO2 targets after the deposition of an
inert Au electrode to suppress the evolution of nonvolatile
filaments30. A 1-nm-thick Ag layer is deposited at the Ag:SiO2/Au
interface to decrease and stabilize the threshold voltage (Vth) of
CF formation (see Supplementary Fig. S1). The phase change
material GST is directly deposited without metal interconnec-
tions, followed by the deposition of a TiW top electrode (see
Methods and Supplementary Fig. S2 for fabrication details).

The pair structure of TS-PCM is designed to achieve
coexistence of volatility and nonvolatility. A volatile Ag filament
grows in the Ag-doped SiO2 TS layer by an electric field above
Vth, forming a contact with the GST/Ag:SiO2 interface. Due to the
small contact area of CF, Joule heating is induced by the volatile
Ag filament, resulting in a phase transition of the top GST film31.
The phase of GST layer reversibly changes between amorphous
and crystalline states depending on the applied pulse amplitude
and width, leading to nonvolatile resistive switching32. After the
filament-driven phase transition process, the Ag CF in the
Ag:SiO2 layer spontaneously ruptures by the Gibbs-Thomson
effect33,34, enabling the coexistence of volatility and nonvolatility
in a single TS-PCM cell. Figure 1b presents an optical image of a
fabricated TS-PCM cell with a simple crossbar structure. The
device is patterned in 100 × 100 nm2 size via an e-beam
lithography (EBL) process to improve the reproducibility of
volatile CF formation in the TS layer (see Supplementary Figs. S3
and S11), as shown in the scanning electron microscope (SEM)
image of Fig. 1c.

The nonvolatile resistive switching behavior of PCM layer is
analogous to synaptic plasticity of a biological system, facilitating
the implementation of an artificial synapse. As illustrated in the
upper panel of Fig. 1d, a synapse is a gap between the dendrite of
a post-neuron and the axon terminal of a pre-neuron, which
transmits signals by the emission of neurotransmitters. Due to the
synaptic plasticity, the strength of synaptic connection can be
strengthened or weakened depending on the stimulation timing,
frequency, and amplitude. The lower panel of Fig. 1d illustrates a
representative example of synaptic plasticity, called spike-timing-
dependent plasticity (STDP), where the connection strength is
enhanced depending on the time interval between pre-synaptic
and post-synaptic spikes. As shown in the experimental results of
Fig. 1e, the PCM layer in the TS-PCM device can emulate
synaptic behaviors due to the hysteretic nonvolatile resistive
switching of GST film. Figure 1e demonstrates that the GST-
based PCM can emulate STDP, which is essential for the memory
and learning functions.

Neuronal plasticity, another element of a cognitive neural
network, can be emulated by an Ag:SiO2-based TS device using
volatile resistive switching behavior. The upper panel of Fig. 1f
introduces neuronal excitation that integrates input stimulus to
fire an action potential (AP). Due to the intrinsic plasticity, the
firing rate of a neuron is modulated according to the stimulus
history, as illustrated in the lower panel of Fig. 1f. Recent studies
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on volatile memristors such as TS and Mott devices have shown
promising results in hardware realization of artificial
neurons35,36. Figure 1g describes the volatile resistive switching
in the bottom TS layer in which Ag CF grows and spontaneously
ruptures depending on the electric bias. The lower panel of Fig. 1g
demonstrates the voltage spiking behavior by current input,
introducing the emulation of intrinsic plasticity by the TS-PCM
circuit. TS-PCM is designed to implement an artificial synapse
with neuronal intrinsic plasticity, which will be discussed in detail
in a later section.

Operation of volatile TS, nonvolatile PCM, and unified TS-
PCM. Discrete cells of volatile TS and nonvolatile PCM are
characterized for the unified operation of TS-PCM. The TS
device, known as a diffusive memristor, is fabricated with a Pt/
Ag:SiO2/Ag/Au structure to achieve stable volatile resistive
switching performance25. As shown in Fig. 2a, the TS device in an
initial high resistance state (HRS) is changed to a low resistance
state (LRS) at Vth of 0.33 V with an on/off ratio over 5 × 105. As
illustrated in the inset images, the conductive Ag filament rup-
tures below Vth, resulting in the transition to the HRS without an
additional reset process. The high surface energy of Ag/SiO2

interface induces spontaneous rupture of the filament, leading to
atomic clustering of Ag atoms in SiO2 host matrix33. In contrast,

PCM exhibits nonvolatile resistive switching, as demonstrated in
Fig. 2b. The as-deposited GST film is in an amorphous phase with
high resistance of 1.11 × 104Ω, that changes to a crystalline phase
by Joule heating during the voltage sweep. The operation current
of PCM is dependent on the size of Joule heating element, which
shows a dramatic decrease with the adoption of a conductive
filament nanoheater, as reported in our previous paper31.

The TS-PCM device is fabricated by combining two distinctive
volatile and nonvolatile memristive devices without intermediate
electrodes between them. Because of the coexisting nonvolatile-
volatile characteristics of TS-PCM, four different states are observed
during the voltage-sweep operation, as shown in Fig. 2c, d. In the
initial stage (i), the bottom TS and top PCM layers are in the OFF
state, demonstrating high resistance over 3 × 107Ω. The bottom TS
layer is switched to the ON state in stage (ii) by applying an electric
field above Vth, presenting relatively low resistance of 8 × 106Ω. The
top PCM layer still remains in the OFF state in stage (ii), since the
applied current during the 0-1 V voltage-sweep is insufficient to
induce the phase transition of GST film. After the voltage sweep,
TS-PCM is switched back to stage (i), presenting the volatility of the
TS-PCM device. The PCM layer is changed to the ON state by
application of a SET pulse (2 V, 200ms), that leads to a transition to
stage (iii). The TS-PCM in stage (iii) demonstrates high resistance
of 9 × 106Ω, due to the TS layer being in the OFF state. A voltage
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Fig. 1 Structure of TS-PCM composed of volatile TS and nonvolatile PCM layers. a Schematic diagram of TS-PCM composed of volatile TS and
nonvolatile PCM layer. The phase transition of the top PCM layer is regulated by the Ag filament formation in the bottom TS layer. b Optical microscope
image of fabricated TS-PCM cell. Scale bar, 10 μm. c SEM image of TS-PCM showing the nanopatterned electrodes via EBL process. Scale bar, 5 μm.
d Illustration of biological synapse with emission neurotransmitters (upper panel). A representative example of STDP is shown in the lower panel.
e Schematic diagram of PCM with the phase transition process (upper panel). The lower panel demonstrates the emulation of STDP by TS-PCM.
f Illustration of a biological neuron that integrates input signals into an AP spike (upper panel). The lower panel shows the neuronal intrinsic plasticity of
neuron. g Schematic diagram of TS device presenting the formation and rupture of Ag filament (upper panel). The lower panel demonstrates the emulation
of intrinsic plasticity by TS-PCM and a parallel capacitor.
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bias above Vth induces the formation of Ag CF, which results in
stage (iv) with low resistance of 4 × 104Ω. The bottom TS layer
operates in a volatile manner regardless of the top PCM layer
resistance, enabling the coexistence of volatile and nonvolatile
resistive switching characteristics. Note that the coexistence of
volatility and nonvolatility in TS-PCM is different from the volatile-
nonvolatile transition behaviors reported elsewhere. In volatile-
nonvolatile transition behavior, volatility is not maintained after the
nonvolatile switching of the device. The power consumption level of
TS-PCM has also been calculated in pulse measurement scheme
(see Supplementary Fig. S14 for details). The set and reset power

TS-PCM cell are 216 μW (129.6 nJ/bit) and 2.21mW (0.33 nJ/bit),
using 2 V amplitude and 600 μs width set pulse and 10 V amplitude
and 50 ns width reset pulse, respectively. The reset current of TS-
PCM is ~230 μA, which is lower than that of conventional PCM
devices due to the filament confinement effect37,38. Note that the
power efficiency of TS-PCM can be improved through the
optimization of measurement setups and the scaling of cell size,
owing to the low set and reset current values. The switching
characteristics of TS-PCM can be modelled by the combination of
phase change memory and threshold switch39–42. Using
chalcogenide-based resistor function, Fermi-like smooth blending
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threshold switching at 0.33 V and spontaneous reset. b I-V curve of PCM showing nonvolatile resistive switching by voltage sweep (blue). The second
sweep (red) exhibits a high current value, indicating the nonvolatile phase transition of the GST film. c Schematic diagram of four stages in TS-PCM
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four stages illustrated in c. Inset shows a TEM image of the TS-PCM cell with Ag clusters in the SiO2 matrix. Scale bar, 10 nm. e Resistance-based color
map (upper panel) and bar graph (lower panel) of worst-case scenario that verifies the random-access capability of TS-PCM. f Illustration of circuit model
utilized in the OBPU method. For a sufficiently large N, RLsneak/(N-1)2 becomes negligible. g Calculated readout margin by OBPU method. The TS-PCM
array can be scaled up to 316 × 316 for a 10% readout margin in average noise case (red curve). The maximum array size of TS-PCM is decreased to
214 × 214 in maximum noise case (blue curve).
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function, and filament-based resistance functions, the model of TS-
PCM can be established (see Supplementary note 3)42,43.

The volatility of bottom TS layer prevents the sneak current
problem that arises from the 2-terminal crossbar structure of TS-
PCM44. Figure 2e demonstrates the random-access test results of
a 3 × 3 TS-PCM array. The resistance-based color map and
corresponding cell resistance graph of worst-case scenario
indicate that the TS-PCM array operates in a random-access
manner without the sneak current problem. The maximum array
size of TS-PCM is calculated using the one-bit-line pull-up
(OBPU) method45–47. The OBPU scheme utilizes a simplified
circuit model to represent an N × N crossbar array, as shown in
Fig. 2f. The normalized readout margin is given as follows:

4V
Vpull�up

¼ Rpull�up

RLRS k RSneak

� �þ Rpull�up

� Rpull�up

RHRS k RSneak

� �þ Rpull�up

ð1Þ

where ΔV, Vpull-up, Rpull-up, RLRS, RHRS, and RSneak are the readout
voltage swing, pull-up voltage, pull-up resistance, LRS cell
resistance, HRS cell resistance, and sneak path resistance,
respectively. The calculation results in Fig. 2g indicate that the
TS-PCM array can be scaled up to 316 × 316 for a 10% readout
margin, verifying the random-access capability of TS-PCM
device. In addition, the effect of noise on the maximum array
size can be calculated using the resistance values with largest
errors (see Supplementary Fig. S15). The resistance values for
maximum noise case are 9.69 × 104Ω, 7.78 × 105Ω, and
2.32 × 107Ω, for RLRS, RHRS, and RLSneak, respectively. For the
same readout margin of 10%, possible array size of TS-PCM is
calculated as 214 × 214 which is far less than the average noise
case. (see Supplementary note 1 for calculation details).

Simultaneous emulation of spiking behavior and synaptic
plasticity. The coexistence of volatile and nonvolatile resistive
switching behaviors in TS-PCM enables the implementation of
neuronal and synaptic behaviors in a single cell. Neuronal spiking
behavior, a key element of information processing, has been
emulated using the volatile characteristics of bottom TS layer in
TS-PCM. Figure 3a describes the neuronal membrane in the
resting potential state and depolarization state, with a corre-
sponding circuit representation. Generation and propagation of
AP spikes in the neuron are governed by the movement of
charged ions such as Na+, K+, and Cl− that create a certain
potential difference across the lipid bilayer. The voltage-gated ion
channels in the membrane open when pre-neuron neuro-
transmitters bind to post-neuron receptors, leading to depolar-
ization of the neuronal membrane by the movement of ions. As
shown in the right panel of Fig. 3a, the lipid bilayer and voltage-
gated ion channel can be represented with simplified RC circuit
with TS-PCM16,48. The bottom TS layer, parallel capacitor, and
electrons are equivalent to the voltage-gated ion channel, lipid
bilayer, and charged ions in a biological system, respectively. The
capacitor separates charges and generates the potential difference
similar to the lipid bilayer, while TS-PCM modulates current flow
depending on Ag filament formation in the manner of the
voltage-gated ion channel. It is noteworthy that the parallel
capacitor in Fig. 3a is not essential for the spiking emulation of
TS-PCM. Due to the inherent parasitic capacitance of the device,
which is known to be proportional to the device area, TS-PCM is
able to mimic the neuronal spiking behaviors without parallel
capacitor units (see Supplementary Fig. S17). The parallel capa-
citor in Fig. 3a is adopted for the exact control of capacitance
which provides comprehensive understanding of voltage spiking
behaviors of TS-PCM.

Due to the functional similarity, TS-PCM can emulate various
forms of neuronal spiking behavior like tonic spiking and
bursting, as demonstrated in Fig. 3b–e49–51. Tonic spiking mode,
a series of single spike firing, is known to be involved in working
memory, fear extinction, and visual information processing. The
emulation of tonic spiking mode is confirmed in Fig. 3b using TS-
PCM and a parallel capacitor, showing repetitive and regular
voltage spikes upon a current pulse input of 0.8 μA. On the other
hand, tonic bursting mode, rapid firing with quiescent periods,
governs low frequency stimulation and retrieval of previous
learning52–55. Figure 3c indicates that tonic spiking behavior is
changed to tonic bursting mode, presenting rapid firing with
quiescent periods over 20 ms by a high input current of 2.5 μA.
The voltage spiking behavior originates from the charging and
discharging of capacitor in the parallel RC circuit. For tonic
spiking mode, the voltage functions of the nth charging state
(Vn

ch) and nth discharging state (Vn
dis) are given as follows:

Vch
n tð Þ ¼ IinRH 1� exp � t � tchn

τch

� �� �
ð2Þ

Vdis
n tð Þ ¼ IRLexp � t � tdisn � τdisln Vth=IRL

� 	
τdis

� �
ð3Þ

where Iin, tnch, tndis, τch, and τdis are the input current, charging
time of the nth spike, discharging time of the nth spike, time
constant of charging, and time constant of discharging,
respectively. When IinRH >Vth > 0 V, the capacitor voltage
increases up to Vth according to the charging function of Eq.
(2). The resistance of TS-PCM abruptly decreases from RH to RL
after the TS switching above Vth, leading to the discharging of
parallel capacitor. Capacitor voltage decreases from Vth to 0 V
following the discharging function of Eq. (3). The resistance of
TS-PCM is switched back to RH by the spontaneous reset of TS
layer, that leads to charging of the capacitor. The charging and
discharging of the capacitor iteratively occur by the repetitive
threshold switching of TS-PCM, resulting in the voltage spiking
behavior (see Supplementary note 2 for details).

The spiking voltage functions in Eqs. (2) and (3) are equivalent
to the membrane voltage function in a single compartment model
of a biological neuron that facilitates the implementation of
neuronal functions by TS-PCM. For example, the capacitance of
RC circuit determines the time constant τ= RC, modulating the
speed of charging and discharging. The specific membrane
capacitance (Cm) of neuron has been reported as 1.0 μF/cm2 with
a time constant of 100–200ms56. The time constant of neuron
depends on its surface area, affecting the propagation speed of AP
through the membrane57. For the TS-PCM circuit with a 4.72 nF
capacitor in tonic spiking mode, the time constant is measured to
be 5.09 ms for τch and 0.12 ms for τdis, presenting a faster response
time compared to a biological neuron (see Supplementary
Fig. S12). In addition, the parallel capacitor regulates the firing
frequency of TS-PCM tonic spiking. From Eqs. (2) and (3), spike
period T can be calculated as follows:

T ¼ τchln
IRH � Vmin

IRH � Vth

� �
þ τdisln

Vth

Vmin

� �

¼ C RH ln
IRH � Vmin

IRH � Vth

� �
þ RLln

Vth

Vmin

� �
 � ð4Þ

Since the capacitance C is proportional to the time constant τ, the
spike period T is proportional to the capacitance. As shown in
Fig. 3d, it is confirmed that the average spike period is increased
from 5.83ms to 6.82ms by increasing the capacitance from 4.72 nF
to 5.61 nF. Furthermore, the charging and discharging characteristics
facilitate the emulation of leaky integrate-and-fire (LIF) model in
TS-PCM. The LIF model describes the generation of an AP spike as
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the integration of input signals with continuous decay. Due to the
exponential decay of integrated potential, high frequency stimulation
is required for the generation of an AP spike. Figure 3e demonstrate
the emulation of LIF behavior using two consecutive input voltage
pulses. Due to the low amplitude below Vth of the bottom TS layer, a
single pulse input cannot generate a current spike of TS-PCM. For a
sufficiently short time interval, two input signals are integrated above
Vth, firing a current spike, as shown in Fig. 3e. It should be noted
that the Vth of TS-PCM in Fig. 3e is larger than the previous result
shown in Fig. 2d. The threshold voltage of electrochemical
metallization cells, like threshold voltage, depends on the measure-
ment parameters such as amplitude, width, and delay time. Due to
the short pulse width of 700 μs, Vth of TS-PCM in Fig. 3e is
increased from 0.4 V to 0.6 V.

Synaptic plasticity is also emulated by nonvolatile character-
istics of TS-PCM. Figure 3f describes the structure of synapse

before and after the long-term potentiation (LTP), that explains
the mechanism of synaptic plasticity in chemical synapse.
Communication between adjacent neurons is regulated by the
emission of neurotransmitters (blue dots) stored in synaptic
vesicles of the pre-neuron axon terminal. The receptors in the
post-neuron dendrite receive the released neurotransmitters,
generating the excitatory postsynaptic potential (EPSP). Repeti-
tive stimulations can increase the number of synaptic vesicles and
receptors, increasing the connection strength and associated
EPSP amplitude. Figure 3g shows an experimental demonstration
of a symmetric Hebbian learning rule, one type of long-term
synaptic plasticity. Same pulse conditions are applied for pre- and
post-spike, using 0.6 V amplitude and 1 ms pulse width. The
weight change is not accumulated since the device was reset
between each measurement. The change in resistance of TS-PCM
exhibits clear dependency on the time interval between pre-
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neuron and post-neuron spikes, the most basic form of a learning
rule. The depression of synaptic weight is just as important as the
potentiation process, due to the effect of causality on learning
operation58. Based on the well-known phase change properties of
GST film, the depression of synaptic weight is possible in TS-
PCM cell (see Supplementary Fig. S8). In addition to long-term
plasticity, emulation of short-term synaptic plasticity is demon-
strated using volatile characteristics of TS-PCM. Figure 3h
presents the emulation of paired-pulse facilitation, a well-
known form of short-term synaptic plasticity. The output current
of TS-PCM exhibits a temporary increase for two identical
voltage pulses, due to the sufficiently small time interval. The
finite retention time of Ag CF in the bottom TS layer leads to an
increased filament radius for repetitive input, and this results in
temporary increment of the output current value59,60. Short-term
plasticity in artificial synapse provides enhanced learning
capability such as working memory and decision operation,
similar to biological systems.

Intrinsic plasticity and synergistic concomitance. In addition to
spiking behaviors, neuronal intrinsic plasticity should be emulated
for the implementation of learning and memory functions. As
shown in Fig. 4a, the biological neuron is composed of dendrites,
soma, and axon, that govern signal reception, cell function, and
signal transmission, respectively61. A specific region called the axon
initial segment (AIS) is located between the soma and axon, where a
large number of ion channels are concentrated62. As shown in
Fig. 4b-(i), input signals are received by dendrites and transmitted to
the axon through the AIS. Due to the concentrated ion channels,
AIS is more excitable than other regions of the axon, regulating the
threshold of AP generation in the neuron. The signal sensitivity of
neuron in Fig. 4b-(i) is determined by the initial neuronal excit-
ability, which is dependent on the length of AIS. As shown in 4b-(ii),
the elongation of AIS expands the excitable region, increasing the
intrinsic excitability of the neuron. The neuronal intrinsic plasticity,
the ability of neuron to change its firing probability depending on
the stimulation history, can be induced by the structural deforma-
tion of AIS region in neuron. The modulation of firing threshold by
the structural change of AIS is known to be a key mechanism of
intrinsic plasticity63.

The AIS-regulated excitability is similar to the Vth modulation of
residual filament in the bottom TS layer, facilitating the emulation of
intrinsic plasticity by TS-PCM. The reset process of the TS layer is
based on the atomistic diffusion of Ag filament induced by the
surface energy minimization. Residual filament of Ag clusters may
remain after the spontaneous reset process, changing the threshold
of filament formation. The Vth of TS-PCM is modulated depending
on the size and location of filament residues, leading to a change of
firing frequency in spiking emulation (see Supplementary Figs. S20
and S21). As shown in Fig. 4c, d, intrinsic plasticity is emulated by
TS-PCM based on the Vth modulation of residual filament. After five
cycles of pre-stimulation with a 2 s interval, the experimental firing
frequency of TS-PCM increases from 287.5 Hz to 462.5 Hz for the
same input current of 2.5 μA. Note that experimental spike
frequency has been calculated from the number of voltage spikes
per input pulse width. Pre-stimulation with short time interval
prevents the complete diffusion of Ag filament, leading to lowered
Vth and increased excitability. As shown in Fig. 4e, the change of
excitability is dependent on the pre-stimulation intervals. An
exponential decaying function is fitted to the intrinsic plasticity
curve of TS-PCM:

y ¼ A � exp � x
τ

� 

þ y0 ð5Þ

The excitability exponentially increases as the time interval
decreases below a τ of 4.90 s, due to the reduction of filament

diffusion time. Figure 4c–e indicate that TS-PCM can emulate the
neuronal intrinsic plasticity, specifically the structural AIS
plasticity-induced excitability change in biological neuron.
Neuron intrinsic plasticity can be classified into three categories:
EPSP amplification, spike threshold modulation, and resting
potential change1. Spike threshold of neuron can be modulated by
the AIS structural plasticity, which is analogous to the Vth

modulation by the Ag residual filament adaptability. The
elongation of AIS in the neuron can be induced by specific
stimulation patterns, which confirms high similarity between TS-
PCM and a biological system64.

During the biological learning process, synaptic and intrinsic
plasticity occur interdependently with synergistic interactions.
Figure 4f describes the effect of long-term synaptic plasticity on
neuronal excitability, called EPSP-spike coupling (E-S
coupling)4,65,66. E-S coupling is one of the main mechanisms of
intrinsic plasticity, which is induced by the synaptic weight
change instead of AIS structural plasticity. The initial excitability
curve (black) follows a sigmoid function with a threshold T0,
which shows horizontal translations depending on the synaptic
modifications. Increased synaptic strength reduces the threshold
to TP, resulting in long-term potentiation of intrinsic plasticity
(LTP-IE). As shown in Fig. 4g, LTP-IE is implemented in TS-
PCM based on the concomitant emulation of synaptic and
intrinsic plasticity. The resistance of TS-PCM decreases from
4.1 × 105Ω to 8.3 × 104Ω by resistive switching of the top PCM
layer, leading to increment of the experimental spiking frequency
from 30.5 Hz to 109.8 Hz. There are delay time between the
voltage spikes for the high resistance state, which is induced by
the increased relaxation time of the Ag filament. The value of
Vmin increases with the increment of device resistance, which
hinders the diffusion of the conductive filament. As a result, the
experimental spiking frequency deviates from the voltage spiking
equation. Note that the spiking behavior of TS-PCM is inherently
stochastic, showing random noise patterns and chaotic deviations
from the voltage spiking equation. The inherent stochasticity of
TS-PCM can be originated from the thermal fluctuation that
induces the distribution of diffusion time of Ag ions67–69.
Figure 4h demonstrates the excitability curve of TS-PCM,
presenting the horizontal translation after the LTP process. The
excitability curve of the hippocampal neuron (CA1 region) is
shown in the inset of Fig. 4h66, verifying that TS-PCM
successfully mimicked E-S coupling behavior in biological
neuron. The emulation of E-S coupling indicates that TS-PCM
implements the synergistic interactions between synaptic and
intrinsic plasticity, promoting the realization of complicated
learning functions.

Concomitant neuroplasticity and feedback learning in TS-
PCM. In the learning and memory mechanism of biological
neural network, synaptic strength is modified by neuronal AP
spikes. As shown in Fig. 5a, input stimuli are integrated in the
pre-neuron to fire AP spikes, subsequently modifying the
synaptic weight depending on the pattern of generated AP spikes.
TS-PCM emulates the biological learning process based on the
concomitant neuroplasticity. Figure 5b–d demonstrate the emu-
lation of basic learning process using the LIF behavior of TS-PCM
(see Supplementary Fig. S22). As shown in the inset of Fig. 5b,
total 20 voltage pulses with 0.5 V amplitude is equally applied
from cycle 1 to cycle 4, which is lower than Vth of bottom TS
layer. Despite of the small input amplitude, a current spike (blue
dot) of 83.3 Hz and 0.40 μA is generated after 13 voltage pulses in
cycle 1 of Fig. 5b, due to the emulation of LIF neuron model. In
cycle 2 of Fig. 5c, spike frequency and amplitude simultaneously
increase to 583.3 Hz and 0.51 μA upon same input pulse train.
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A consecutive stimulation promotes the modulation of firing
frequency and synaptic weight, due to the emulation of intrinsic
and synaptic plasticity, respectively. The spike frequency and
amplitude further increase in cycle 4 of Fig. 5d, showing highest
value of 750.0 Hz and 0.85 μA. The simultaneous increment of
firing frequency and spike amplitude indicates the concomitant
intrinsic and synaptic plasticity, mimicking learning mechanism
of neuron-synapse pair structure shown in Fig. 5a. The con-
comitant neuroplasticity has also been confirmed in single voltage
pulse input, confirming the coexistence of neuronal spiking,
intrinsic plasticity, and synaptic plasticity (see Supplementary
Fig. S23).

A positive feedback learning loop is established in TS-PCM
based on the concomitant neuroplasticity and LTP-IE. As
illustrated in Fig. 5e, intrinsic and synaptic plasticity participate

in the learning process, forming hidden and synaptic memory
states, respectively. The input signal I(t) is integrated in the
neuron to fire AP spikes modulating the synaptic memory state.
The enhanced synaptic strength increases the intrinsic plasticity
by LTP-IE, leading to recording of the hidden memory state. In
this feedback loop, hidden memory regulates the state of synaptic
memory by AP fire, and synaptic memory also change the state of
hidden memory by LTP-IE. The AP spiking frequency is
subsequently increased by hidden memory, reinforcing the
synaptic modification process. The concomitant neuroplasticity
and LTP-IE promote positive feedback between the neuron and
synapse, leading to an increased rate of acquisition. For example,
retraining in the biological system is faster than naive training
due to the increased excitability, emphasizing the role of intrinsic
plasticity in the learning process70. A schematic illustration in
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Fig. 5f describes naive training, forgetting, and retraining process,
that shows a clear difference in the learning rate4,26. The synaptic
memory state is updated by consecutive stimulation in naive
training, presenting relatively slow rate of acquisition compared
to retraining process. The intrinsic excitability of the neuron is
increased during naive training, forming the hidden memory
state that remains after the forgetting process. The retraining
process is subsequently boosted by the hidden memory as shown

in the feedback loop of Fig. 5e, that results in the faster rate of
acquisition.

The positive feedback learning is demonstrated using a TS-
PCM array based on the emulation of concomitant neuroplas-
ticity. As shown in the SEM image of Fig. 5g, a crossbar
structured 4 × 4 TS-PCM array is fabricated to conduct a pattern
memorization task. A 4 × 4 pixel image of “F” in Fig. 5h is trained
in TS-PCM array using two different training schemes of naive
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training and feedback learning. To examine the effect of positive
feedback on weight update process in each cell, a single pattern
without noise is utilized for the learning operations. A 0.5 V training
pulse is applied in the orange-colored pixels for synaptic memory
updates and pattern memorization, while 0.1 V noise pulse is applied
in the blue-colored pixels. Figure 5i illustrates the conductance-based
color map of 16 TS-PCM cells with increasing training epochs for
naive training (upper panel) and feedback learning (lower panel). A
0.5 V training pulse is iteratively applied for six epochs in both
learning schemes, resulting in the memorization of letter “F” as
shown in the right panels of Fig. 5i. For the feedback learning, five
cycles of 0.3 V pre-training pulse is applied prior to the training
epochs to develop hidden memory states. Note that synaptic memory
states remain unchanged after the pre-training epochs, as shown in
the conductance level of feedback learning in epoch 1. In other
words, the pre-training voltage 0.3 V is large enough to activate the
filament formation in TS layer, but is small to initiate the
phase transition in PCM layer. Through the positive feedback loop,
the hidden memory reinforces the learning process, leading to the
accelerated acquisition in feedback learning. As illustrated in the
lower panel of Fig. 5i, the average conductance level of the TS-PCM
cells in feedback learning quickly diverges from 0.64 μS to 5.60 μS,
presenting faster learning rate compared to naive training (see also
Supplementary Fig. S24). Figure 5j summarizes the synaptic weight
updates of two different training schemes with linear fitting functions.
The acquisition rate of each training process is calculated as 0.06/
epoch and 0.221/epoch for naive training and feedback learning,
respectively. In feedback learning, pre-training stimulation induces
the increment of excitability and firing frequency, leading to the
three-fold faster rate of synaptic weight modification. It is noteworthy
that the acquisition rate of naive training can increase after a few
more training epochs, since the intrinsic excitability of TS-PCM
increases during the training. Because of the one-to-one correspon-
dence between pre-neuron and synapse, the network structure of TS-
PCM array appears to be independent connections of each cells.
However, TS-PCM array is more like subdividing a pre-neuron in a
word line into multiple pre-neuron axon terminal in associate bit line
as illustrated in Fig. 5k. The multiple bit line pre-neuron axon
terminals, the TS layers in TS-PCM, are still tied together in each
word lines, enabling learning operations like other memristive neural
networks as shown in Fig. 5l. Note that the output post-neuron
devices are connected to the TS-PCM array followed by the virtual
ground circuits71. As presented in Fig. 5m, the accelerated training
can be applied to learning operation in TS-PCM based ANN since
the positive feedback effect have been confirmed in weight update of
each device. Simple binary patterns of “10” and “01” are input to
2 × 2 TS-PCM array with two different training schemes of naive and
feedback learning, as shown in Fig. 5n72. The binary patterns can be
identified through the bit line currents I1 and I2, following the simple
equation of Ij ¼ ∑ViWij. Figure 5o shows the current response of
TS-PCM array with two different input binary patterns. The orange-
colored bar graphs of naive training confirm that each bit line
identifies different patterns, “10” for I1 and “01” for I2, respectively.
The red-colored graphs of feedback training shows amplified current
output compared to that of naive training, presenting the accelerated
acquisition in supervised learning operation.

Discussion
We proposed a memristive synaptic device composed of volatile TS
and nonvolatile PCM layers in a single element. On the basis of the
functional similarity, tonic spiking and bursting were successfully
demonstrated by the RC circuit of TS-PCM. Synaptic plasticity was
confirmed by the mimicking of a symmetric Hebbian learning rule
and paired-pulse facilitation, verifying the successful emulation of a
synapse by TS-PCM. In addition, neuronal intrinsic plasticity was

achieved based on the analogy between the AIS of neuron and the
residual filament of bottom TS layer, presenting the increment of
spiking frequency by pre-stimulation. The LTP-IE of TS-PCM was
enabled by the synergistic concomitance of synaptic and intrinsic
plasticity, showing a similar excitability curve to that of the biological
neuron. A positive feedback learning loop is established in TS-PCM
so that hidden memory modulates the state of synaptic memory and
vice versa. The feedback learning process is demonstrated in a
crossbar structured 4 × 4 TS-PCM array, which exhibits a three-fold
higher acquisition rate compared to naive training similar to the
biological retraining process. TS-PCM provides a concomitant
solution for the hardware realization of an artificial synapse with
synergistic interactions, presenting high similarity with the compli-
cated learning mechanism of biological system. Further studies on
homeostatic plasticity and functional stability can promote a more
comprehensive emulation of the neural network for brain-inspired
neuromorphic computing.

Methods
Fabrication of TS-PCM device. A 8 inch silicon wafer was prepared was used for the
fabrication of TS-PCM. A 100 nm× 20 μm size line pattern was generated via EBL
process using JEOL JBX-9300FS and e-beam resist PMMA. A 5 nm thick Ti adhesion
layer and a 30 nm thick Au bottom electrode were deposited by e-beam evaporator,
followed by a lift-off process. A 100 μm× 100 μm size bottom contact pad was pat-
terned by conventional photolithography process. A 20 nm thick Ti adhesion layer and
a 40 nm thick Au layer were subsequently deposited by e-beam evaporator and were
lift-off in ultrasonic bath with acetone. The switching medium of bottom TS layer was
deposited by sputtering of a 1 nm thick Ag layer and a 15 nm thick Ag:SiO2 layer. For
the deposition of Ag:SiO2, Ag and SiO2 targets were co-sputtered in Ar atomosphere. A
100 nm× 20 μm size top line pattern was generated via EBL process using VEGA3
ELPHY Quantum Lithography System and e-beam resist PMMA. A 10 nm thick phase
changing GST layer was deposited by RF sputtering of GST target in Ar atmosphere,
followed by the sputtering of a 40 nm thick TiW layer. A nanopattern PMMA film was
lift-off in ultrasonic bath with acetone. A top contact pad was patterned via conven-
tional lithography process, followed by the deposition of a TiW film and lift-off process.

Device characterization. All electrical measurements were conducted using a
Keithley 4200-SCS semiconductor parameter analyzer. Keithley 4225-PMU with a
remote amplifier/switch (Keithley 4225-RPM) was also utilized for the voltage
pulse measurements. In the spiking emulations, voltage spikes were measured by
Tektronix DPO 3054 digital phosphor oscilloscope with P6139B voltage probe
(10MΩ input resistance). A conventional ceramic capacitor of 4.72 nF and 5.61 nF
capacitance were connected in parallel for the TS-PCM RC circuit.

Data availability
The data that support the findings of this study are present in the article and
Supplementary Information. Additional data related to this study is available from the
corresponding author upon request.
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