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ABSTRACT
Operator fusion is essentially and widely used in a large number

of matrix computation systems in science and industry. The exist-

ing distributed operator fusion methods focus on only either low

communication cost with the risk of out of memory or large-scale

processing with high communication cost. We propose a distributed

elastic fused operator called Cuboid-based Fused Operator (CFO)

that achieves both low communication cost and large-scale process-

ing. We also propose a novel fusion plan generator called Cuboid-

based Fusion plan Generator (CFG) that finds a fusion plan to fuse

more operators including large-scale matrix multiplication. We

implement a fast distributed matrix computation engine called

FuseME by integrating both CFO and CFG seamlessly. FuseME

outperforms the state-of-the-art systems including SystemDS by

orders of magnitude.
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1 INTRODUCTION
Matrix computation is essentially andwidely used in a large number

of applications in various fields such as database, machine learning,

health, music, and games [2]. The applications include collabora-

tive filtering, principle component analysis (PCA), singular value

decomposition (SVD), Lower-Upper (LU) factorization, betweeness

centrality, and deep neural networks. As the sizes of real matrix

datasets are growing rapidly, fast and scalable matrix computation
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systems have become more important than ever before. For exam-

ple, the sizes of Facebook’s dataset are 100 billion ratings, more

than a billion users, and millions of items [26].

For processing large-scale matrix computation in a fast and scal-

able way, a number of distributed matrix computation systems on

top of MapReduce-based frameworks [6, 7, 14, 16, 18, 30, 32, 36, 37]

have been proposed. For a matrix query, these systems generate

and execute a query plan as Directed Acyclic Graph (DAG) of basic

matrix operators. Some of those systems try to fuse a chain of basic

operators into a single operator called a fused operator [7, 8, 12].

This operator fusion can reduce the amount of intermediate data by

avoiding unnecessary materialization [24] and improve the query

performance by eliminating unnecessary scans [3] and unnecessary

computation through so-called sparsity exploitation [7]. There are

also a lot of efforts to fuse basic matrix operators, such as element-

wise multiplication and matrix multiplication [5, 8, 12, 15, 22, 25].

Alternating Least Squares (ALS) [7, 21, 31] is one of the matrix

factorization methods. Figure 1(a) shows a motivating example of

operator fusion for weighted squared loss (𝑋 ≠ 0) ∗ (𝑋 −𝑈 ×𝑉 )2
of ALS [7], where ∗ is element-wise multiplication, (𝑋 ≠ 0) is
non-zero elements of 𝑋 , matrix 𝑋 is sparse, and matrices 𝑈 and 𝑉

are dense. The gray cells mean non-zero elements, and the dotted

cells indicate no materialization. The fused operator takes three

matrices 𝑋 , 𝑈 , and 𝑉 , and then, calculates the loss without the

materialization of (𝑋 ≠ 0) and dotted cells of 𝑈 × 𝑉 . It directly
computes 𝑥1,2∗(𝑥1,2−𝑢1,:×𝑣:,2)2 for𝑂1,2 without thematerialization

across operators and avoids the computation for most of the output

elements since 𝑋 is sparse.

SystemDS [6] is the state-of-the-art distributed matrix computa-

tion system. It uses GEN [8], which is the state-of-the-art template-

based fusion plan generator. From a query plan in DAG, the fu-

sion plan generator finds sub-DAGs called partial fusion plans.

Figure 1(b) shows the fusion plan generated by GEN for the query

in Figure 1(a). In the figure, the left matrix of each operator means

its result matrix. For the query, GEN of SystemDS generates a single

partial fusion plan in orange dotted, which is executed as a single

fused operator. Although GEN can find a partial fusion plan to

exploit sparsity well as in Figure 1(b), it tends to avoid including

large-scale matrix multiplication in its fusion plan. Matrix multipli-

cation is one of the operators having the highest communication

cost and memory usage on the distributed environment [18], and

so a fusion plan containing the large-scale one tends to fail. Fig-

ure 1(c) shows the fusion plan generated by GEN for the query

(𝑋 ×𝑉𝑇 ∗𝑈 ) ÷ (𝑉𝑇 ×𝑉 ×𝑈 ), which is the part of Gaussian Non-

negative Matrix Factorization (GNMF) [28]. GEN fuses only two

element-wise operators, i.e., ∗ and ÷, for the query. The existing
systems including SystemDS tend not to achieve the best possible
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Figure 1: Example of operator fusion.

performance by missing many opportunities of operator fusion

including large-scale matrix multiplication.

To solve the above issues, we propose a new distributed fused

operator, called Cuboid-based Fused Operator (CFO), and a new

fusion plan generator, called Cuboid-based Fusion plan Genera-

tor (CFG). In terms of a fused operator, there are two kinds of

operators: Broadcast-based Fused Operator (BFO) and Replication-

based Fused Operator (RFO). The BFO broadcasts smaller matrices

to all the tasks where a larger matrix is repartitioned. The RFO

replicates the part of smaller matrices to all the tasks where a larger

matrix is repartitioned. The BFO tends to fail due to exceeding the

memory limit per task, while the RFO tends to be slow due to high

communication overhead. Our proposed CFO achieves both low

communication overhead and low memory usage per task by ex-

tending the concept of cuboid partitioning [18] from simple matrix

multiplication to a complex arbitrary fused operator. The CFO per-

forms partitioning elastically so as to achieve the best performance

for given task memory, input matrices, and operators. In terms of a

fusion plan generator, our proposed CFG can find a partial fusion

plan containing large-scale matrix multiplication based on CFO,

and moreover, find a much larger partial plan than the state-of-the-

art plan generator GEN does. A larger partial plan means reducing

unnecessary materialization and computation more. We implement

the distributed matrix computation engine called FuseME by inte-

grating our CFO and CFG seamlessly on top of Apache Spark [39].

Due to a new fused operator and plan generator, FuseME improves

the performance of matrix queries compared to the state-of-the-art

system, i.e., SystemDS, by orders of magnitude.

Our major contributions are summarized as follows:

• We propose a novel distributed fused operator, called Cuboid-

based Fused Operator (CFO).

• We propose a novel fusion plan generator, called Cuboid-

based Fusion plan Generator (CFG).

• We implement a distributed matrix computation engine

FuseME based on CFO and CFG.

• We have demonstrated that our method improves the per-

formance of the existing methods up to by 238× and 64× in

terms of elapsed time and communication cost, respectively

The rest of this paper is organized as follows. Section 2 reviews

operator fusion, fused operators, and cuboid-based matrix multipli-

cation. We present our distributed fused operator, CFO, in Section 3,

and our fusion plan generator, CFG, in Section 4. Section 5 presents

the implementation of FuseME briefly, and Section 6 presents the

results of the experimental evaluation. Finally, we discuss related

work in Section 7 and conclude this paper in Section 8.

2 PRELIMINARIES
In this section, we explain operator fusion of matrix computation

systems in Section 2.1 and the state-of-the-art distributed fused

operators in Section 2.2. We also explain the cuboid-based matrix

multiplication of DistME[18] in Section 2.3.

2.1 Operator Fusion
In general, matrix computation systems support five types of basic

matrix operators [14]: binary, unary, binary aggregation, and unary

aggregation, and reorganization.

• Unary operator performs an element-wise operation (e.g.,

𝑙𝑜𝑔, 𝑠𝑖𝑛, and 𝑝𝑜𝑤 ) for each element of an input matrix and

returns the result of the operation as an output matrix, where

both input and output matrices have the same dimensions.

• Binary operator takes two matrices as input and returns

one matrix as output, where all the matrices of input and

output have the same dimensions. This type performs an

element-wise operation (e.g., ∗, +,−, and ÷) for each pair of

elements, 𝑥𝑖, 𝑗 and 𝑦𝑖, 𝑗 , for two input matrices 𝑋 and 𝑌 . If

one input is just a scalar, it applies all elements of the other

input matrix.

• Unary aggregation operator takes one matrix as input

and returns a matrix, a vector, or a scalar as output de-

pending on aggregation, and so the input and output have

different dimensions in general. The examples are 𝑠𝑢𝑚(),
𝑟𝑜𝑤𝑆𝑢𝑚(), and 𝑐𝑜𝑙𝑆𝑢𝑚(). Given a matrix𝑋 of 𝐼 × 𝐽 , 𝑠𝑢𝑚(𝑋 ),
𝑟𝑜𝑤𝑆𝑢𝑚(𝑋 ), and 𝑐𝑜𝑙𝑆𝑢𝑚(𝑋 ) perform ∑

0≤𝑖<𝐼 ,0≤ 𝑗<𝐽 𝑥𝑖, 𝑗 ,∑
0≤ 𝑗<𝐽 𝑥𝑖, 𝑗 , and

∑
0≤𝑖<𝐼 𝑥𝑖, 𝑗 , respectively.

• Binary aggregation operator takes two matrices having a

common dimension as input and returns a matrix as output.

Given 𝑋 of 𝐼 × 𝐾 and 𝑌 of 𝐾 × 𝐽 , it returns a matrix of 𝐼 × 𝐽
by performing an arithmetic operation (e.g., ∗) and aggrega-

tion operation (e.g.,

∑
and

∏
) on the common dimension 𝐾 .

Matrix multiplication belongs to this type.

• Reorganization operator takes one matrix and reorganizes

the elements in the matrix. The transpose operator belongs

to this type.

Many machine learning systems [1, 6–8, 12, 15, 22, 25, 37] sup-

port operator fusion to perform a complex of basic matrix operators

as a single fused operator. These systems generate and execute a

Direct Acyclic Graph (DAG) as a query plan. In a DAG, the leaf

and root vertices are input and output matrices, respectively. Other

vertices in a DAG are matrix operators, and the edge between two
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vertices is data flow. Operator fusion finds a sub-DAG as a fused

operator. The query plan containing one or more such sub-DAGs

is called a fusion plan. A sub-DAG is called a partial fusion plan.
The search space for finding partial fusion plans in a DAG is expo-

nential [8]. There are four types of operator fusions [8]: Cell, Row,

Outer, and Multi-aggregation.

Cell fusion finds a partial fusion plan that contains consecutive

unary or binary operators. Since the input and output matrices have

the same dimensions in unary and binary operators, element-wise

operations can be easily executed in a fused manner. Figure 2(a)

shows an example of Cell fusion for 𝑋 ∗ 𝑈 ÷ 𝑉 , where a sparse

matrix𝑋 has two non-zero elements, and two dense matrices𝑈 and

𝑉 have 2×2 elements. The expression𝑋 ∗𝑈 ÷𝑉 is one of the matrix

computation patterns used in the GNMF query [28]. The binary

operators 𝑏 (∗) and 𝑏 (÷) perform element-wise multiplication and

division, respectively. Cell fusion finds 𝐹0 as a partial fusion plan,

which takes three input matrices𝑋 ,𝑈 , and𝑉 and performs element-

wise operations, i.e., ∗ and ÷, in a fused manner. 𝐹0 avoids the

materialization of 𝑋 ∗𝑈 and directly results in the output matrix𝑂

for the entire expression 𝑋 ∗𝑈 ÷𝑉 .
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(a) Cell fusion (𝑿 ∗ 𝑼 ÷ 𝑽)

(d) Multi-Aggregation 
(𝐬𝐮𝒎 𝑼 ∗ 𝑿 , 𝐬𝐮𝒎(𝑿 ∗ 𝑽))

(b) Row fusion ( 𝑿×𝑺 𝑻×𝑿)

(c) Outer fusion (	 𝑼×𝑽 ∗ 𝑿)

𝑏𝑎(×)

𝑟(𝑇)

𝑏𝑎(×)

𝑢","𝑢",$
𝑢$,"𝑢$,$

𝑈 𝑉

𝑜","𝑜",$

𝑏𝑎(×)

𝑏(∗)

𝑏(∗) 𝑏(∗)

𝑢𝑎(𝑠𝑢𝑚)

𝑣","𝑣",$
𝑣$,"𝑣$,$

F0 F1

F2
F3

𝑢𝑎(𝑐𝑖𝑑𝑥) 𝑢𝑎(𝑐𝑖𝑑𝑥)

𝑥","
𝑥$,"

𝑢𝑎(𝑠𝑢𝑚)

𝑜"," 𝑜",$
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Figure 2: Examples of Operator fusion: Cell, Row, Outer, and
Multi-aggregation.

Row fusion finds a partial fusion plan that reuses the rows of

an input matrix to avoid the redundant scan of the input matrix

and the materialization of intermediate matrices. The partial fusion

plan may contain binary, unary, binary aggregation, and reorga-

nization operators. Figure 2(b) shows an example of Row fusion

for (𝑋 × 𝑆)𝑇 ×𝑋 , where 𝑆 is 2 × 1. The expression (𝑋 × 𝑆)𝑇 ×𝑋 is

one of the matrix computation patterns used in principle analysis

components (PCA) [9]. The 𝐹1 contains three operators: two matrix

multiplications 𝑏𝑎(𝑥) and one transpose 𝑟 (𝑇 ), where the rows of
𝑋 are used twice, but scanned only once in the fused operator. In

addition, 𝐹1 avoids the materialization of 𝑋 × 𝑆 .
Outer fusion fuses matrix multiplication and element-wise mul-

tiplication to avoid unnecessary calculations. The zero elements

in an input matrix of element-wise multiplication do not need to

be calculated in matrix multiplication as well. It is called sparsity

exploitation [8]. Figure 2(c) shows an example of Outer fusion for

(𝑈 ×𝑉 ) ∗𝑋 , which is one of the matrix computation patterns used in

loss computation such as weighted squared loss [7, 20, 21, 31] and

generalized KL-divergence [27]. The 𝐹2 includes matrix multiplica-

tion 𝑏𝑎(×) and element-wise multiplication 𝑏 (∗). It performs them

only for non-zero elements of 𝑋 . As a result, it avoid unnecessary

calculations, i,e, 𝑢0,: × 𝑣:,1 and 𝑢1,: × 𝑣:,0, in𝑈 ×𝑉 .
Multi-aggregation fusion fusesmultiple aggregation operators

that have the same input matrix(es). In general, one matrix operator

has one output. But, the fused operator found by Multi-aggregation

fusion has more than two outputs. Figure 2(d) shows an example

of Multi-aggregation fusion. The 𝐹3 contains two binary operators

𝑏 (∗) and two unary aggregation operators 𝑢𝑎(𝑠𝑢𝑚) and generates

the output matrix 𝑂 . 𝑂0,0 stores the result of 𝑠𝑢𝑚(𝑈 ∗ 𝑋 ), while
𝑂0,1 stores the result of 𝑠𝑢𝑚(𝑋 ∗𝑉 ). After 𝐹3, the additional unary
aggregation operator 𝑢𝑎(𝑐𝑖𝑑𝑥) is called to pick a specific result in

𝑂 , where 𝑐𝑖𝑑𝑥 is a column index (e.g., 0 or 1).

2.2 Distributed Fused Operators
Once distributed matrix computation systems [6, 7, 14, 18, 36, 37]

finds partial fusion plans in a query DAG, as in Section 2.1, they

generate a fusion plan containing the corresponding fused operators

and execute the fusion plan in a distributed manner. They usually

represent a matrix as a grid of fixed-sized blocks and use a block as

a basic unit of matrix computation [6, 7, 10, 14, 17, 18, 33, 36, 37].

A block typically has the same width and height, e.g., 1000 × 1000.
Without loss of generality, each distributed fused operator in the

fusion plan is executed as the following three steps [8].

• Matrix consolidation step consolidates the input matrices

required to each task. The input of a fused operator usually

consists of a main matrix and side matrices. The main ma-

trix is the one having the largest number of elements and

repartitioned to the tasks in a cluster of machines. The side

matrices are assigned to the tasks in a broadcast or replica-

tion manner, and so may have more than one replica in the

cluster.

• Local operation step performs the fused operator using the

blocks in a task and generates the result (intermediate blocks).

The fused operator consists of multiple basic operators, and

some of them are usually computed redundantly according

to the replication of blocks of input matrices.

• Matrix aggregation step aggregates the intermediate blocks

by shuffling them to generate the final result. This step is

optional depending on the presence of the last aggregation

operator in the fused operator.

There are two kinds of distributed fused operators depending on

the strategy of the matrix consolidation step [8]: Broadcast-based

Fused Operator (BFO) and Replication-based Fused Operator (RFO).

We explain each method in more detail. we denote the number of

tasks in the cluster as 𝑇 .

BFO broadcasts the side matrices to all the tasks where the main

matrix is repartitioned. Figure 3(a) shows an example of BFO for

the expression 𝑂 = 𝑋 ∗ 𝑙𝑜𝑔(𝑈 × 𝑉𝑇 + 𝑒𝑝𝑠) in NMF [27], where

𝑋 is 3 × 3 blocks, and both 𝑈 and 𝑉 are 3 × 2 blocks. The blocks
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(a) Broadcast-based Fused Operator (BFO)

(b) Replication-based Fused Operator (RFO)
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Figure 3: Example of distributed fused operators for 𝑂 =

𝑋 ∗ 𝑙𝑜𝑔(𝑈 ×𝑉𝑇 + 𝑒𝑝𝑠).
of 𝑋 in different colors indicate different partitions. The blocks

of 𝑈 and 𝑉 are broadcasted to all tasks, 𝑡0 and 𝑡1. In the local

operation step, for example, 𝑡0 computes 𝑋0,0 ∗ 𝑙𝑜𝑔(𝑈0,: ×𝑉𝑇
0,:
+ 𝑒𝑝𝑠)

and generates𝑂0,0. We assume that the main matrix 𝑋 is 𝐼 × 𝐽 , and
the side matrices𝑈 and 𝑉 are 𝐼 × 𝐾 and 𝐽 × 𝐾 , respectively. Then,
the memory usage per task is

|𝑋 |
𝑇
+ |𝑈 | + |𝑉 | for input and |𝑂 |

𝑇
for

output. The communication cost, i.e., the amount of data transferred

via network, is |𝑋 | + 𝑇 · ( |𝑈 | + |𝑉 |) in the matrix consolidation

step. BFO executes the transpose of 𝑉 (before performing matrix

multiplication) two times in a cluster: one is in 𝑡0 and the other is

in 𝑡1. In general, BFO executes the transpose 𝑇 times.

RFO replicates the blocks of the side matrices by up to 𝐼 or

𝐽 times, where 𝑋 is 𝐼 × 𝐽 . Figure 3(b) shows an example of RFO

for the same query. The red-lined blocks {𝑋0,0, 𝑋0,1, 𝑋0,2} of 𝑋 are

repartitioned to 𝑡0, 𝑡1, and 𝑡2. Thus, the green-lined blocks of 𝑈

and the blue-lined blocks of 𝑉 are replicated by up to 3 times to

the same set of tasks. Then, the local operation step of 𝑡0, 𝑡1, and

𝑡2 generate 𝑂0,0, 𝑂0,2, and 𝑂0,1, respectively. The memory usage

per task is
|𝑋 |
𝑇
+ 𝐽 · |𝑈 |

𝑇
+ 𝐼 · |𝑉 |

𝑇
for input and

|𝑂 |
𝑇

for output. The

communication cost is |𝑋 |+ 𝐽 · |𝑈 |+𝐼 · |𝑉 | in the matrix consolidation

step. RFO executes the transpose of 𝑉 three times on average (in

general, 𝐼 times on average).

Table 1 summarizes the communication cost, memory usage

per task, and the maximum parallelism of BFO and RFO for 𝑂 =

𝑋 ∗ 𝑙𝑜𝑔(𝑈 ×𝑉𝑇 + 𝑒𝑝𝑠). Our cuboid-based fused operator (CFO) will
be explained in Section 3.

2.3 Cuboid-based Matrix Multiplication
The matrix multiplication of𝐶 = 𝐴×𝐵 can be computed as in Eq.(1),

where 𝐶𝑖, 𝑗 (0 ≤ 𝑖 < 𝐼 , 0 ≤ 𝑗 < 𝐽 ) is a block of 𝐶 .

𝐶𝑖, 𝑗 =
∑︁

0≤𝑘<𝐾
𝐴𝑖,𝑘 · 𝐵𝑘,𝑗 =

∑︁
0≤𝑘<𝐾

𝐶𝑘𝑖,𝑗 (1)

It can be represented as a 3-dimensional model [18], as in Fig-

ure 4(a), where 𝐼 = 𝐽 = 𝐾 = 4. The 𝑖𝑘-plane of the model indicates

the matrix 𝐴, the 𝑘 𝑗-plane indicates 𝐵, and the 𝑖 𝑗-plane indicates𝐶 .

The model space has a total of 𝐼 · 𝐽 ·𝐾 voxels. A voxel 𝑑𝑖, 𝑗,𝑘 indicates

that 𝐴𝑖,𝑘 · 𝐵𝑘,𝑗 generates a partial result of 𝐶𝑖, 𝑗 , denoted by 𝐶𝑘
𝑖,𝑗
.

Cuboid-based Matrix Multiplication (CuboidMM) [18] conceptu-

ally partitions the 3-dimensional model space into multiple cuboid-

shaped chunks of voxels to reduce network communication. Its

(𝑃,𝑄, 𝑅)-cuboid partitioning partitions the whole space into 𝑃 ·𝑄 ·𝑅
cuboids, where 𝑃 ,𝑄 and 𝑅 are the number of partitions on the 𝑖-axis,

𝑗-axis, and 𝑘-axis, respectively. Figure 4(b) shows an example of

(𝑃 = 4, 𝑄 = 2, 𝑅 = 1)-cuboid partitioning. Each cuboid consists of

⌈ 𝐼
𝑃
⌉ × ⌈ 𝐽

𝑄
⌉ × ⌈𝐾

𝑅
⌉ voxels. 𝐷𝑝,𝑞,𝑟 indicates a specific cuboid, where

0 ≤ 𝑝 < 𝑃 , 0 ≤ 𝑞 < 𝑄 , and 0 ≤ 𝑟 < 𝑅. CuboidMM determines

(𝑃,𝑄, 𝑅) as a small enough value for each cuboid to fit in the mem-

ory of a task, and at the same time, a large enough value for a

cluster to fully exploit its parallelism, i.e., 𝑃 ·𝑄 · 𝑅 ≥ 𝑇 .

(a) 3-dimensional model (b) (4,2,1)-cuboid partitioning

𝑑",","
𝑖

𝑘

𝑗
𝐵(,)

𝐶),+
𝐴),"

𝐷",+,"

𝐷",","

Figure 4: Example of Cuboid matrix multiplication.

CuboidMM performs the following three steps: matrix reparti-

tion, local multiplication, and matrix aggregation. In Figure 4(b),

the matrix repartition step assigns each of eight cuboids to each

task. A block of𝐴 is replicated to tasks by𝑄 times, and a block of 𝐵

is replicated to tasks by 𝑃 times. The local multiplication step of a

task performs matrix multiplication for the voxels in its cuboid and

produces a partial result. For example, the cuboid 𝐷0,0,0 produces

the result of 𝐶0,0 and 𝐶0,1. The matrix aggregation step aggregates

the partial results of 𝑅 cuboids along the 𝑘-axis. In Figure 4(b), the

matrix aggregation step does nothing because 𝑅 = 1, i.e., the result

of the local multiplication step is the final result.

3 CUBOID-BASED FUSION
In this section, we propose the model space for the cuboid-based

fusion in Section 3.1 and propose the distributed Cuboid-based

Fused Operator (CFO) in Section 3.2. Then, we present the cost-

based optimization of CFO in Section 3.3.

3.1 3-Dimensional Model for Fused Operators
We propose a new 3-dimensional model space to represent an arbi-

trary fused operator that contains at least one matrix multiplication.

The fused operators that do not contain matrix multiplication are

relatively easy to find, and their costs in terms of computation and

communication are relatively small. So, we focus on the ones that

contain matrix multiplication in this study. We will explain parti-

tioning the input matrices of a fused operator by using this model

space in Section 3.2.

Figure 5(a) shows some basic matrix operators in Section 2.1 in

our new model space. They are a unary operator 𝑢 (∧2), a unary
aggregation operator 𝑢𝑎(𝑐𝑜𝑙𝑆𝑢𝑚), a binary operator 𝑏 (∗), and a

reorganization operator 𝑟 (𝑇 ). All basic matrix operators, except

binary aggregation, are represented along the same dimension. An

operator and its operands are connected with a directed edge. For

example, the binary operator 𝑏 (∗) takes 𝑋 and𝑈 and generates 𝑂 .

Figures 5(b)-(e) show four types of operator fusions in Section 2.1

in our model space. Figure 5(b) shows Cell fusion of 𝑋 ∗𝑈 ÷𝑉 . It
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Table 1: Comparison among distributed fusion methods for 𝑂 = 𝑋 ∗ 𝑙𝑜𝑔(𝑈 ×𝑉𝑇 + 𝑒𝑝𝑠) (𝑃 ≤ 𝐼 , 𝑄 ≤ 𝐽 , and 𝑅 ≤ 𝐾).

Distributed fusion Methods Communication Memory Maximum Redundant

cost usage number of computation of

per task tasks the transpose of 𝑉

Broadcast-based fused operator (BFO) |𝑋 | +𝑇 · ( |𝑈 | + |𝑉 |) |𝑋 |
𝑇
+ |𝑈 | + |𝑉 | + |𝑂 |

𝑇
𝐼 · 𝐽 𝑇

Replication-based fused operator (RFO) |𝑋 | + 𝐽 · |𝑈 | + 𝐼 · |𝑉 | |𝑋 |
𝑇
+ 𝐽 · |𝑈 |

𝑇
+ 𝐼 · |𝑉 |

𝑇
+ |𝑂 |

𝑇
𝐼 · 𝐽 𝐼

Cuboid-based fused operator (CFO) 𝑅 · |𝑋 | +𝑄 · |𝑈 | + 𝑃 · |𝑉 | 𝑅 · |𝑋 |
𝑇
+ 𝑄 · |𝑈 |

𝑇
+ 𝑅 · |𝑉 |

𝑇
+ |𝑂 |

𝑇
𝐼 · 𝐽 · 𝐾 𝑃

does not include binary aggregation, and so is represented along

the same dimension. The dotted matrix between 𝑈 and 𝑉 is the

output matrix of 𝑏 (∗), which is actually not materialized. Figure 5(c)

shows Row fusion of (𝑋 × 𝑆)𝑇 × 𝑋 . 𝑋 × 𝑆 is represented as a 3-

dimensional model, since it is matrix multiplication. Its output

matrix is not materialized, but fed into a transpose reorganization

operator, 𝑟 (𝑇 ) as input. The output of 𝑟 (𝑇 ) is again fed into another

matrix multiplication as input, without materialization. Figure 5(d)

showsOuter fusion (𝑈×𝑉 )∗𝑋 . The outputmatrix of𝑈×𝑉 is fed into

a binary operator 𝑏 (∗) as input, without materialization. Figure 5(e)

shows Multi-aggregation fusion (𝑠𝑢𝑚(𝑈 ∗ 𝑋 ), 𝑠𝑢𝑚(𝑋 ∗ 𝑉 )). The
output matrices of two binary operators 𝑏 (∗) are not materialized.

(a) Basic matrix operators

(b) Cell fusion (𝑿 ∗ 𝑼 ÷ 𝑽) (c) Row fusion ( 𝑿×𝑺 𝑻×𝑿)

(d) Outer fusion (	 𝑼×𝑽 ∗ 𝑿) (e) Multi-aggregation fusion
(𝐬𝐮𝒎 𝑼 ∗ 𝑿 , 𝐬𝐮𝒎(𝑿 ∗ 𝑽))

𝒓(𝑻)

𝒃𝒂(×) 𝒃𝒂(×)

𝑂
𝑋×𝑆

𝑖

𝑘
𝑗

𝑗

𝑖
𝑘

unary

𝒖(^𝟐)

𝑋 𝑂

𝑖

𝑗

unary 
aggregation

𝒖𝒂(𝒄𝒐𝒍𝑺𝒖𝒎)

binary

𝒃(∗)

𝑋 𝑈 𝑂

𝑖

𝑗

𝑋@,@ ∗ 𝑈@,@
= 𝑂@,@

reorganization

𝑖

𝑗
𝒓(𝑻)

𝑗

𝑖

𝑋 𝑈 𝑉

𝒃(∗) 𝒃(÷)

𝑂

𝑖

𝑗

𝒃(∗)
𝒃𝒂(×)

𝑋 𝑂

𝑖

𝑘
𝑗

𝑈×𝑉
𝑈

𝑉
𝑂

𝑋

𝒖𝒂(𝒔𝒖𝒎)

𝒖𝒂(𝒔𝒖𝒎)

𝑖

𝑗 𝒃(∗)

𝒃(∗)

𝑆

Figure 5: Basic matrix operators and four types of operator
fusions in our 3-dimensional model space.

The 3-dimensional model space for a fused operator containing

matrix multiplication consists of four kinds of subspaces: 𝐿-space,

𝑅-space, 𝑂-space, and 𝑀𝑀-space. Figure 6(a) shows an example

DAG query plan, which include three partial fusion plans, 𝐹0, 𝐹1,

and 𝐹2. The types of operator fusions of 𝐹0, 𝐹1, and 𝐹2 are Cell

fusion, Row fusion, and Outer fusion, respectively. The entire query

plan is represented as a single fused operator in our 3-dimensional

model space, as in Figure 6(b). We denote the model space for main

matrix multiplication in a query as𝑀𝑀-space. We assume that the

center 𝑏𝑎(×) in the DAG is the main matrix multiplication. Then,

we denote the model space adjacent to the 𝑖𝑘-plane of the 𝑀𝑀-

space as 𝐿-space. Likewise, we denote the model space adjacent to

the 𝑗𝑘-plane as 𝑅-space and that adjacent to the 𝑖 𝑗-plane as𝑂-space.

Here, 𝐿−, 𝑅−, and 𝑂−space means the left, right, and output space,

respectively. The outputs of 𝐿-space and 𝑅-space become the input

of 𝑀𝑀-space, and the output of 𝑀𝑀-space becomes the input of

𝑂-space.

𝑏𝑎(×)

𝑏(÷)

𝑏(∗) 𝑏𝑎(×)

𝑟(𝑇)

𝑏(≠)

𝑏(−)

𝑨 𝑩

𝑪

𝑫 𝑬

𝑿

F0

F2

F1

(a) Example of query plan

𝑢(^2)

𝑏(∗)

𝟎 𝑖

𝑘
𝑗

𝒃𝒂(×)

𝒃(≠)

𝒃(−)
𝒃(÷)

𝒓(𝑻)

𝑅-space

𝐿-space

𝑂-space

𝒃(∗)

(b) Example of cuboid-based fusion

𝒖(^𝟐)
𝒃(∗)

𝑀𝑀-space

Figure 6: The 3-dimensional model for fused operators.

3.2 Cuboid-based Fused Operator (CFO)
In this section, we propose the Cuboid-based Fused Operator (CFO).

Once the query plan generator described in Section 4 finds partial

fusion plans, each partial fusion plan is executed by the CFO. The

CFO is a physical operator and does not determine which operators

it should fuse. The entire CFO is executed in a fused manner, i.e.,

do not generate intermediate matrices. The goal of the CFO is

reducing communication cost as much as possible, and at the same

time, exploiting the parallelism of a cluster as much as possible, for

the memory limit of a task and the sizes of input matrices. Once

the CFO partitions 𝑀𝑀-space into (𝑃 , 𝑄 , 𝑅) cuboids, other three

kinds of spaces, 𝐿-space, 𝑅-space, and 𝑂-space, are automatically

partitioned according to the partitions of𝑀𝑀-space. Thus, the CFO

partitions 𝑀𝑀-space with considering the partitions of all other

three spaces, so as to achieve the above goal.

The CFO performs (𝑃,𝑄, 𝑅)-cuboid partitioning for𝑀𝑀-space.

𝐿-space, 𝑅-space, and𝑂-space are partitioned by (𝑃 , 1, 𝑅)-, (1,𝑄 , 𝑅)-,

and (𝑃 ,𝑄 , 1)-cuboid partitioning, respectively. Figure 7(a) shows an

example of (𝑃 = 2, 𝑄 = 2, 𝑅 = 2)-cuboid partitioning for the model

space in Figure 6(b). Each of 𝐿-, 𝑅-, and𝑂-space has four partitions,

while𝑀𝑀-space eight partitions. The first partitions of 𝐿-, 𝑅-, and

𝑂-space (in gray) are denoted as 𝐿0,0,0,𝑅0,0,0, and𝑂0,0,0, respectively.

Session 26: Data Management for ML 3 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1895



In general, a cuboid 𝐷𝑝,𝑞,𝑟 matches three cuboids 𝐿𝑝,0,𝑟 , 𝑅0,𝑞,𝑟 , and

𝑂𝑝,𝑞,0, where 0 ≤ 𝑝 < 𝑃 , 0 ≤ 𝑞 < 𝑄 , and 0 ≤ 𝑟 < 𝑅. We denote

a combination of four cuboids, 𝐷𝑝,𝑞,𝑟 , 𝐿𝑝,0,𝑟 , 𝑅0,𝑞,𝑟 , and 𝑂𝑝,𝑞,0, as

𝑃𝑝,𝑞,𝑟 . Each partitioned space of the CFO (e.g., 𝑃0,0,0 in Figure 7(a))

is executed independently by a task.

Figures 7(b) and (c) show the details of 𝐿-space and 𝑅-space,

which are partitioned into (𝑃 = 2, 𝑄 = 1, 𝑅 = 2) and (𝑃 = 1, 𝑄 = 2,

𝑅 = 2) cuboids, respectively. We rotate the original 𝑖-, 𝑗-, and 𝑘-axis

for presentation of the details. In Figure 7(b), the input matrices

𝐴, 𝐵, and 𝐶 are arranged like in Cell fusion of Figure 5(b), where

the output matrix is not materialized since it is fed into matrix

multiplication of 𝑀𝑀-space. In Figure 7(c), the input matrices 𝐷

and 𝐸 are arranged like in Row fusion of Figure 5(c). The output of

𝐷 × 𝐸 is not materialized, and instead, after being transposed, it is

fed into matrix multiplication of𝑀𝑀-space. Figure 7(d) shows the

details of 𝑂-space, which contains four operators and two inputs,

𝑋 and zero scalar. In Figure 7(d), all intermediate matrices are not

materialized, and the final output matrix is materialized.

(a) (2,2,2)-space partitioning
of cuboid-based fusion

(b) 𝑳-space partitioning

(c) 𝑹-space partitioning (d) 𝑶-space partitioning

𝑖

𝑘
𝑗

Partition 𝑷𝟎,𝟎,𝟎

𝑹𝟎,𝟎,𝟎

𝑳𝟎,𝟎,𝟎

𝑶𝟎,𝟎,𝟎

𝑫𝟎,𝟎,𝟎

𝑨 𝑩 𝑪

𝒃(∗) 𝒃(÷)

𝑳𝟎,𝟎,𝟎

𝒓(𝑻)

𝑹𝟎,𝟎,𝟎

𝑫×𝑬

𝑖
𝑗

𝑘

𝑘
𝑖

𝑗

𝑗
𝑖

𝑘
𝑖

𝑘
𝑗

𝑶𝟎,𝟎,𝟎

𝒃(≠)𝟎

𝒃(−) 𝒖(^𝟐) 𝒃(∗)

𝑿

Figure 7: Example of space partitioning of the CFO.

Figure 8 shows the steps of cuboid-based fusion for 𝑂 = 𝑋 ∗
𝑙𝑜𝑔(𝑈 ×𝑉𝑇 + 𝑒𝑝𝑠), the same query in Section 2.2. In the figure, we

just omit the transpose operator for 𝑉 for simplicity. We assume

there are three tasks, 𝑡0, 𝑡1, and 𝑡2. The matrix consolidation step

partitions the entire space into {𝑃0,0,0, 𝑃0,0,1, 𝑃0,0,2}, where 𝑃0,0,0
consists of 𝐷0,0,0 and 𝑂0,0,0. The local operation step assigns each

partition to each task. 𝑃0,0,0 is processed by 𝑡0, and 𝑃0,0,2 is processed

by 𝑡2. We denote a single fused operation for a single output block

as a kernel. In 𝑡0, three kernels are executed since the partition

𝑃0,0,0 has three output blocks 𝑂0,0, 𝑂0,1, and 𝑂0,2. In each kernel,

both input and output of 𝑢 (+) are not materialized, and the output

of 𝑢 (𝑙𝑜𝑔) (i.e., one input of 𝑏 (∗)) is also not materialized.

The bottom row in Table 1 summarizes the cost, memory usage,

parallelism, and redundant computation of the CFO. The matrix 𝑈

is replicated to tasks by 𝑄 times, the matrix 𝑉 is replicated by 𝑃

times, and the matrix𝑋 is replicated by 𝑅 times. Thus, it reduces the

𝒃(∗)𝒖(𝒍𝒐𝒈)𝒖(+)

𝑘

𝑖

𝑗

matrix 
consolidation

local
operation

𝑷𝟎,𝟎,𝟎 = {𝐷3,3,3, 𝑂3,3,3}

𝒕𝟎kernel0
𝑂3,3∗ 𝒍𝒐𝒈 							×				+𝒆𝒑𝒔 =

kernel1
𝑂3,<∗ 𝒍𝒐𝒈 							×				+𝒆𝒑𝒔 =

kernel2
𝑂3,=∗ 𝒍𝒐𝒈 							×				+𝒆𝒑𝒔 =

𝑂3,3𝑂3,<𝑂3,=

𝒕𝟐kernel0
𝑂=,3∗ 𝒍𝒐𝒈 							×				+𝒆𝒑𝒔 =

kernel1
𝑂=,<∗ 𝒍𝒐𝒈 							×				+𝒆𝒑𝒔 =

kernel2
𝑂=,=∗ 𝒍𝒐𝒈 							×				+𝒆𝒑𝒔 =

⋯

⋯

⋯ 𝑂=,3𝑂=,<𝑂=,=

𝑷𝟎,𝟎,𝟐 = {𝐷3,3,=, 𝑂3,3,=}

𝑀𝑀-space

𝑂-space

𝑈×𝑉 𝑋

Figure 8: Steps of cuboid-based fusion (𝑋 ∗ 𝑙𝑜𝑔(𝑈 ×𝑉𝑇 + 𝑒𝑝𝑠)).
communication cost for𝑈 and𝑉 compared with the RFO since𝑄 <

𝐽 and 𝑃 < 𝐼 . Although the cost of the CFO rather increases for 𝑋 by

𝑅 times, our optimization method for (𝑃,𝑄, 𝑅) in Section 3.3 tends

to determine 𝑅 as a value as small as possible. The memory usage

per task is usually determined as a value smaller than the memory

limit per task by adjusting (𝑃,𝑄, 𝑅), and so out of memory (O.O.M.)

does not occur in the CFO. In contrast, the BFO may have O.O.M.

depending on the memory limit, since the memory usage per task

is fixed. The number of maximum tasks (i.e., parallelism) of the

CFO is higher than that of the BFO and RFO by 𝐾 times. For the

transpose of 𝑉 , CFO executes the transpose three times in 𝑅-space

because 𝑃=3. Since 𝑃 ≤ 𝐼 , and𝑇 is similar to 𝑃 ·𝑄 · 𝑅, the degree of
redundant computation of CFO is less than those of BFO and RFO.

Figure 9 shows theoretical communication cost and memory

usage of BFO, RFO, and CFO while varying (𝑃,𝑄, 𝑅). From Table 1,

the BFO and RFO can be regarded as having (𝑃 = 𝑇,𝑄 = 𝑇, 𝑅 = 1)

and (𝑃 = 𝐼 ,𝑄 = 𝐽 , 𝑅 = 1), respectively. The BFO’s memory usage

is high although it has a low communication cost. The RFO has a

high communication cost although its memory usage is low. Both

methods have no control knob for the cost and memory usage.

On the contrary, the CFO can determine the best parameters (𝑃∗,
𝑄∗, 𝑅∗) having the lowest communication cost within the memory

budget per task.

cost

(𝐼, 𝐽, 𝐾)

BFO

(𝑇,𝑇, 1) (𝑃, 𝑄, 𝑅)

CFO

(𝐼, 𝐽, 1)

RFO

memory budget

communication costmemory usage per task

Figure 9: Comparison of theoretical cost and memory usage.
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3.3 Parameter Optimization for CFO
In this section, we present a method of finding the optimal parame-

ters (𝑃∗, 𝑄∗, 𝑅∗). We assume that we have a partial fusion plan 𝐹

which will be executed as a single CFO. 𝐹 = (𝑉 , 𝐸) is a sub-DAG
of a query plan in a DAG, where a vertex 𝑣 ∈ 𝑉 is either a matrix

operator or a matrix, and an edge 𝑒 ∈ 𝐸 is matrix flow. We denote

the main matrix multiplication as 𝑣𝑚𝑚 and the memory budget per

task as 𝜃𝑡 . The vertex 𝑣𝑚𝑚 corresponds to𝑀𝑀-space in the CFO.

We denote the peak network bandwidth as 𝐵̂𝑛 (e.g., 1 Gbps) and the

peak computation bandwidth as 𝐵̂𝑐 (e.g., 500 GFLOPS). We use both

bandwidths to normalize communication and computation costs.

We note that, in the CFO, not only data blocks are replicated via

network, but also computations of matrix operators are repeated.

We let the task processing a cuboid partition 𝑃0,0,0 as 𝑡 (𝑃0,0,0). Then,
for example, in Figure 7, the four blocks of 𝐴, 𝐵, and 𝐶 in 𝐿0,0,0
are replicated to 𝑡 (𝑃0,0,0) and 𝑡 (𝑃0,1,0) (i.e., two times). In addition,

the series of operators 𝑏 (∗) and 𝑏 (÷) in 𝐿0,0,0 is executed in both

𝑡 (𝑃0,0,0) and 𝑡 (𝑃0,1,0), that is, the computation is repeated two times

in terms of a cluster.

The basic method of finding (𝑃∗, 𝑄∗, 𝑅∗) is picking the one hav-

ing the minimum𝐶𝑜𝑠𝑡 () and at the same time satisfying𝑀𝑒𝑚𝐸𝑠𝑡 (𝑃,
𝑄, 𝑅, 𝐹 ) ≤ 𝜃𝑡 in the search space of (0 < 𝑃 ≤ 𝐼 , 0 < 𝑄 ≤ 𝐽 , 0 < 𝑅 ≤
𝐾). Here, 𝑀𝑒𝑚𝐸𝑠𝑡 (𝑃,𝑄, 𝑅, 𝐹 ) is the estimated memory usage per

task when using (𝑃,𝑄, 𝑅) for evaluating 𝐹 . Hereafter, we simply de-

note (𝑃,𝑄, 𝑅) as 𝑐 , and so𝑀𝑒𝑚𝐸𝑠𝑡 (𝑐, 𝐹 ) means𝑀𝑒𝑚𝐸𝑠𝑡 (𝑃,𝑄, 𝑅, 𝐹 ).
The function 𝐶𝑜𝑠𝑡 () is determined depending as the major cost be-

tween network communication cost 𝑁𝑒𝑡𝐸𝑠𝑡 (𝑐, 𝐹 ) and computation

cost 𝐶𝑜𝑚𝐸𝑠𝑡 (𝑐, 𝐹 ), as in Eq.(2). It is reasonable to consider only the

major cost because communication and computation can overlap[8].

The technique of overlapping computation and communication is

possible because the basic unit of matrix computation is a block.

For example, in Figure 3(b), we assume two tasks 𝑡0 and 𝑡1 run in

the same worker node. Then, during 𝑡0 computes 𝑂0,0, the other

task 𝑡1 can read the necessary input blocks to compute 𝑂0,2. Both

𝑁𝑒𝑡𝐸𝑠𝑡 (𝑐, 𝐹 ) and 𝐶𝑜𝑚𝐸𝑠𝑡 (𝑐, 𝐹 ) are the costs in terms of a cluster,

and so normalized by 𝑁 · 𝐵̂𝑛 and 𝑁 · 𝐵̂𝑐 , respectively, where 𝑁 is

the number of machines in a cluster.

𝐶𝑜𝑠𝑡 (𝑐, 𝐹 ) =𝑚𝑎𝑥 (𝑁𝑒𝑡𝐸𝑠𝑡 (𝑐, 𝐹 )
𝑁 · 𝐵̂𝑛

,
𝐶𝑜𝑚𝐸𝑠𝑡 (𝑐, 𝐹 )

𝑁 · 𝐵̂𝑐
) (2)

We now present three estimations,𝑀𝑒𝑚𝐸𝑠𝑡 (𝑐, 𝐹 ), 𝑁𝑒𝑡𝐸𝑠𝑡 (𝑐, 𝐹 ),
and 𝐶𝑜𝑚𝐸𝑠𝑡 (𝑐, 𝐹 ), in detail. Algorithm 1 presents MemEst(𝑐, 𝐹 )
that estimates the memory usage per task. It basically adds the

costs in 𝐿-, 𝑅-, 𝑂-, and𝑀𝑀-space (Lines 2-9). Each of four spaces

has its own cost. For example, in Figure 7(d), 𝑂0,0,0 uses the mem-

ory of eight gray blocks in 𝑡 (𝑃0,0,0). If either 𝐿-, 𝑅-, or 𝑂-space
𝑠 includes matrix multiplication 𝑣 = 𝑏𝑎(×), we recursively call

MemEst(𝑐 ′, 𝑣) since 𝑣 may create another model space using 𝑣 as

𝑣𝑚𝑚 in a confined space 𝑠 (Line 5). In Line 4, 𝑐 ′ is the parameter

used for partitioning the space 𝑠 . Specifically, the parameters for

𝐿-, 𝑅-, and𝑂-space are (𝑃, 1, 𝑅), (1, 𝑄, 𝑅), and (𝑃,𝑄, 1), respectively.
By passing 𝑐 ′, MemEst(𝑐 ′, 𝑣) can know the confined space. If 𝑣 is

not a matrix multiplication operator in 𝐿-, 𝑅-, and 𝑂-space, or 𝑣

is 𝑣𝑚𝑚 in 𝑀𝑀-space, then we accumulate the memory size of 𝑣 ,

i.e., Mem(𝑣) (Lines 8-9). Here, we accumulate Mem(𝑣) only when

𝑣 is a materialized one (e.g., input or output matrix). For example,

in Figure 7(d), the result of accumulation is eight blocks, since

Mem(𝑋 ) = 4, and Mem(𝑏 (∗)) = 4. The function Mem() is in Eq.(3),

where 𝑠𝑖𝑧𝑒 (𝑣) is divided by either 𝑃 · 𝑅, 𝑄 · 𝑅, or 𝑃 · 𝑄 , due to

partitioning.

𝑀𝑒𝑚(𝑐 = (𝑃,𝑄, 𝑅), 𝑣) =


𝑠𝑖𝑧𝑒 (𝑣) · 1

𝑃 ·𝑅 , if 𝑣 ∈ 𝐿-space
𝑠𝑖𝑧𝑒 (𝑣) · 1

𝑄 ·𝑅 , if 𝑣 ∈ 𝑅-space
𝑠𝑖𝑧𝑒 (𝑣) · 1

𝑃 ·𝑄 , if 𝑣 ∈ 𝑂-space
(3)

The algorithm for 𝑁𝑒𝑡𝐸𝑠𝑡 (𝑐, 𝐹 ) is similar to Algorithm 1, ex-

cept Mem(𝑣) being replaced with Net(𝑣) in Eq.(4). For example,

in Figure 7(b), the four gray blocks of 𝐴 are replicated twice (i.e.,

𝑄 = 2).

𝑁𝑒𝑡 (𝑐 = (𝑃,𝑄, 𝑅), 𝑣) =


𝑄 · 𝑠𝑖𝑧𝑒 (𝑣), if 𝑣 ∈ 𝐿-space
𝑃 · 𝑠𝑖𝑧𝑒 (𝑣), if 𝑣 ∈ 𝑅-space
𝑅 · 𝑠𝑖𝑧𝑒 (𝑣), if 𝑣 ∈ 𝑂-space

(4)

Likewise, the algorithm for𝐶𝑜𝑚𝐸𝑠𝑡 (𝑐, 𝐹 ) is similar to Algorithm

1, except 𝑖𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑 (𝑣) being replaced with 𝑖𝑠𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑣), and
Mem(𝑣) being replaced with Com(𝑣) in Eq.(5), where 𝑛𝑢𝑚𝑂𝑝 (𝑣)
indicates the number of floating point operations to compute the

operator 𝑣 . As mentioned above, in 𝐿-, 𝑅-, and 𝑂-space, the compu-

tation of an operator is repeated by 𝑄 , 𝑃 , and 𝑅 times, respectively.

However, in𝑀𝑀-space, matrix multiplication (𝑣𝑚𝑚) is computed

only once.

𝐶𝑜𝑚(𝑐 = (𝑃,𝑄, 𝑅), 𝑣) =


𝑄 · 𝑛𝑢𝑚𝑂𝑝 (𝑣), if 𝑣 ∈ 𝐿-space
𝑃 · 𝑛𝑢𝑚𝑂𝑝 (𝑣), if 𝑣 ∈ 𝑅-space
𝑅 · 𝑛𝑢𝑚𝑂𝑝 (𝑣), if 𝑣 ∈ 𝑂-space
𝑛𝑢𝑚𝑂𝑝 (𝑣), if 𝑣 = 𝑣𝑚𝑚

(5)

Finding the optimal parameters in an exhaustive manner may be

time-consuming, since the size of search space 𝐼 × 𝐽 × 𝐾 increases

exponentially as the sizes of input matrices increase. Thus, we use a

simple pruning method that prunes a set of parameters {(𝑃,𝑄, 𝑅)}
having a larger 𝐶𝑜𝑠𝑡 () in Eq.(2), compared to the current best pa-

rameters. For example, if the cost of (𝑃 = 1, 𝑄 = 5, 𝐾 = 5) is larger
than the current best parameters, then we can prune a set of param-

eters {(𝑃 > 1, 𝑄 = 5, 𝑅 = 5)} because a larger 𝑃 increases the cost

in both 𝑁𝑒𝑡 () and 𝐶𝑜𝑚(). We also can prune a set of parameters

{(𝑃,𝑄, 𝑅)} such that 𝑃 ×𝑄 ×𝑅 < 𝑁 ×𝑇𝑐 , where𝑇𝑐 is the number of

tasks per node. Such parameters do not fully exploit the parallelism

of a given cluster. If 𝐼 × 𝐽 × 𝐾 < 𝑁 ×𝑇𝑐 , we set the parameters to

ALGORITHM 1: MemEst

Input: 𝑐 ∈ {𝑃,𝑄, 𝑅}, a partial fusion plan 𝐹

Output: 𝑐𝑜𝑠𝑡
1 𝑐𝑜𝑠𝑡 ← 0;

2 for 𝑠 ∈ {𝐿, 𝑅,𝑂,𝑀𝑀}-space of 𝐹 do
3 if 𝑠 ≠ 𝑀𝑀 ∧ 𝑣 = 𝑏𝑎(×) ∧ 𝑣 ∈ 𝑠 then
4 𝑐 ′ ← (𝑃, 1, 𝑅) for 𝐿, (1, 𝑄, 𝑅) for 𝑅, (𝑃,𝑄, 1) for 𝑂 ;
5 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡+MemEst(𝑐 ′, 𝑣);
6 else
7 for 𝑣 ∈ 𝑠 do
8 if 𝑖𝑠𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑 (𝑣) then
9 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡+Mem(𝑣);

10 return 𝑐𝑜𝑠𝑡 ;
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the ones as large as possible. This pruning method is very efficient,

and so can find the optimal parameters within a few milliseconds

using a single thread for the search space of 𝐼 × 𝐽 × 𝐾 = 2𝑀 .

4 CUBOID-BASED FUSION PLAN GENERATOR
The CFO executes all its basic operators in a fused manner. But, the

CFO itself cannot determine its scope, i.e., cannot determine which

set of basic operators should be fused into the CFO. Thus, we need

a fusion plan generator to determine the scope of each CFO.

The existing systems [8, 37] tend to avoid the generation of a

partial fusion plan that includes large-scale matrix multiplication.

In particular, the state-of-the-art fusion plan generator, GEN [8] of

SystemDS, generates a partial fusion plan that includes large-scale

matrix multiplication only when sparsity exploitation is possible,

as in Outer fusion. The main reason of avoiding such a partial

fusion plan in the existing systems is that they have no control

knob for communication cost and memory usage, as explained in

Section 3.2. Without such a knob, a partial fusion plan including

large-scale matrix multiplication tends to run into O.O.M. error. On

the contrary, our system FuseME has a control knob for them, i.e.,

partitioning parameters (𝑃,𝑄, 𝑅). So, it can freely generate a partial

fusion plan including large-scale matrix multiplication.

In this section, we propose a Cuboid-based Fusion plan Genera-

tion (CFG) method for doing that. CFG consists of two phases: the

exploration phase to find candidate plans and the exploitation phase

to refine the candidate plans. We present the former in Section 4.1

and the latter in Section 4.2.

We explain our CFG method using the GNMF query, which

approximates the two factor matrices𝑈 and𝑉 for the rating matrix

𝑋 as in Eq.(6), where 𝑖 is the iteration number, 𝑈 and 𝑉 are dense,

and 𝑋 is sparse.

𝑈𝑖+1 =
𝑈𝑖 ∗ (𝑉𝑇𝑖 × 𝑋 )
𝑉𝑇
𝑖
×𝑉𝑖 ×𝑈𝑖

, 𝑉𝑖+1 =
𝑉𝑖 ∗ (𝑋 ×𝑈𝑇𝑖 )
𝑉𝑖 ×𝑈𝑖 ×𝑈𝑇𝑖

(6)

4.1 Finding Candidate Partial Fusion Plans
The operator fusion can avoid the materialization of intermediate

matrices by fusing multiple operators. However, it cannot fuse all

kinds of operators. There are two kinds of operators that require

the materialization of intermediate matrix and so cannot be fused

together with other operators: (1) the operator having more than

two outgoing edges in aDAG and (2) the unary aggregation operator

requiring a shuffle. The output matrix of the former operator is

called materialization point, because it should be materialized for

multiple operators so as to take the matrix as input [8].

Figure 10(a) shows a query plan in aDAG for theGNMF query (i.e.,

Eq. 6), which consists of twelve operators {𝑣𝑖 |0 ≤ 𝑖 < 12}. Among

them, four operators 𝑣0, 𝑣5, 𝑣6, and 𝑣11, have such materialization

points. For the latter operator, if the input matrix is small, the oper-

ator may not require a shuffle, and so can be fused. However, if the

input matrix is too large, then the operator should materialize its

partial results and shuffle them. Obviously, its final result is also

materialized. For example, if 𝑐𝑜𝑙𝑆𝑢𝑚(𝑋 ) is added in Figure 7(d), the

partial result of 𝑐𝑜𝑙𝑆𝑢𝑚(𝑋 ) in each task should be materialized and

shuffled to get the final result of 𝑐𝑜𝑙𝑆𝑢𝑚(𝑋 ). For the binary aggrega-
tion operator (e.g., 𝑏𝑎(×)), it is fused as a main operator (𝑀𝑀-space)

in our FuseME.

(a) Candidate partial fusion plans

F0

F1

𝑣"": 𝑏(÷)

𝑣(: 𝑏(∗) 𝑣"*: 𝑏𝑎(×)

𝒗𝟕:𝒃𝒂(×)

𝑣1: 𝑟(𝑇)

V
X

U

𝑣4: 𝑏𝑎(×)

𝑣5: 𝑏(÷)

𝑣6: 𝑏(∗) 𝑣7: 𝑏𝑎(×)

𝒗𝟏: 𝒃𝒂(×) 𝑣9: 𝑏𝑎(×)

𝑣*: 𝑟(𝑇)

F′0

F′1 𝑂-space

(b) Determining partial fusion plans

𝑣"": 𝑏(÷)

𝑣(: 𝑏(∗)
𝑣"*: 𝑏𝑎(×)

𝒗𝟕:𝒃𝒂(×)

𝑣1: 𝑟(𝑇)

V
X

U

𝑣4: 𝑏𝑎(×)

𝑣5: 𝑏(÷)

𝑣6: 𝑏(∗) 𝑣7: 𝑏𝑎(×)

𝒗𝟏: 𝒃𝒂(×) 𝑣9: 𝑏𝑎(×)

𝑣*: 𝑟(𝑇)

SystemDS

SystemDS
𝑂-space

Figure 10: Results of two phases of CFG for GNMF.

We call the above two kinds of operators as the termination

operator. The CFG method finds candidate partial fusion plans such

that a partial fusion plan does not include any termination operator,

except for the top operator. That is, a partial fusion plan can have a

termination operator only as the top (root) operator. It starts with

a matrix multiplication operator as an initial candidate plan and

extends it by fusing its adjacent operators. In a DAG, an operator

usually has two kinds of adjacent operators: outgoing (i.e., parent)

adjacent operators and incoming (i.e., child) adjacent operators.

Figure 10(a) shows a fusion plan generated by the exploration

phase of our CFG for GNMF, which contains two candidate partial

fusion plans, 𝐹0 and 𝐹1. We note that SystemDS fuses only two

operators 𝑣3 and 𝑣5 in 𝐹1 (in blue dotted). We assume that CFG starts

one of matrix multiplications, 𝑣1 (i.e., initial 𝐹1). It has two adjacent

operators 𝑣3 and 𝑣0. 𝐹1 is extended to include 𝑣3, i.e, 𝐹1 = {𝑣1, 𝑣3} ,
since 𝑣3 is not a termination operator. But, 𝐹1 does not include 𝑣0,

which is a termination operator. Now, 𝐹1 has an adjacent operator

𝑣5, which is a termination operator, but can be the top operator

of 𝐹1. Thus, 𝐹1 becomes {𝑣1, 𝑣3, 𝑣5} Next, 𝐹1 is further extended

to include 𝑣4 and then 𝑣2, and so becomes {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. Since
there is no additional operator that can be fused, the CFG method

returns 𝐹1 as a candidate plan. Next, we assume that CFG starts

with 𝑣8 as a seed of another candidate plan 𝐹0. Similar to 𝐹1, 𝐹0
is extended to include 𝑣10, 𝑣11, 𝑣9, and 𝑣7, but does not include 𝑣6
since it is a termination operator that cannot be the top operator.

As a result, CFG finds two candidate partial fusion plans 𝐹0 and 𝐹1.

Algorithm 2 presents the exploration phase to find candidate

partial fusion plans. In the algorithm, the function 𝑎𝑑 𝑗𝑎𝑐𝑒𝑛𝑡 (𝐹, 𝑡𝑜𝑝)
(Lines 8 and 18) returns a set of adjacent operators of the partial

fusion plan 𝐹 , excluding the outgoing adjacent operators if the flag

𝑡𝑜𝑝 is true.

4.2 Refining Partial Fusion Plans
Each candidate partial fusion plan obtained by Algorithm 2 may be

too large in terms of the memory limit 𝜃𝑡 , or rather less efficient

than two or more smaller partial fusion plans split from the original

plan. In order to solve these issues, the exploitation phase of CFG

refines each candidate plan.
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ALGORITHM 2: ExplorationPhase
Input: 𝐺 : query plan in a DAG

Output: F : candidate partial fusion plans

1 F ← ∅;
2 𝑊 ← all operators {𝑣𝑖 } in 𝐺 ; /* W: workload */

3 while 𝑏𝑎(×) exists in𝑊 do
4 𝑣𝑚 ← any 𝑏𝑎(×) in𝑊 ;

5 𝑊 ←𝑊 − 𝑣𝑚 ;

6 𝐹 ← {𝑣𝑚};
7 𝑡𝑜𝑝 ← 𝑓 𝑎𝑙𝑠𝑒; /* flag of reaching the top */

8 𝐴𝐷𝐽 ← 𝑎𝑑 𝑗𝑎𝑐𝑒𝑛𝑡 (𝐹, 𝑡𝑜𝑝) ∩𝑊 ;

9 while 𝐴𝐷𝐽 ≠ ∅ do
10 for 𝑣𝑖 ∈ 𝐴𝐷𝐽 do
11 if 𝑖𝑠𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑣𝑖 ) = 𝑓 𝑎𝑙𝑠𝑒 then
12 𝐹 ← 𝐹 ∪ {𝑣𝑖 };
13 else
14 if 𝑖𝑠𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔(𝑣𝑖 ) = 𝑡𝑟𝑢𝑒 then
15 𝐹 ← 𝐹 ∪ {𝑣𝑖 };
16 𝑡𝑜𝑝 ← 𝑡𝑟𝑢𝑒;

17 𝑊 ←𝑊 − 𝑣𝑖 ;
18 𝐴𝐷𝐽 ← 𝑎𝑑 𝑗𝑎𝑐𝑒𝑛𝑡 (𝐹, 𝑡𝑜𝑝) ∩𝑊 ;

19 F ← F ∪ {𝐹 };
20 return F ;

Algorithm 3 presents the phase. 𝐹 may have multiple matrix

multiplications, and the one is determined as the main matrix mul-

tiplication 𝑣𝑚 (Line 3). Then, we find the optimal parameters and

calculate the cost of 𝐹 , as explained in Section 3.3 (Lines 4-5). If 𝐹 is

too large and so cannot fit in 𝜃𝑡 , then (𝑃∗, 𝑄∗, 𝑅∗) are determined as

(𝐼 , 𝐽 , 𝐾), and 𝑐𝑜𝑠𝑡 becomes an infinite value. Next, we find all matrix

multiplication operators in 𝐹 , except 𝑣𝑚 , as a set of splitting points

𝑆𝑃 (Line 6). All operators 𝑆𝑃 = {𝑣𝑖 } are sorted by the minimum

distance (i.e., number of hops) between 𝑣𝑖 and 𝑣𝑚 in descending

order. For example, in Figure 10(b), the distance between 𝑣1 and 𝑣4
is three. We try to first split the most distant 𝑣𝑖 from 𝐹 since such

𝑣𝑖 tends to cause the highest cost in 𝐹 (Lines 8-16), which will be

explained in more detail later. When splitting 𝑣𝑖 from 𝐹 , if 𝑣𝑖 has

its descendent operators in 𝐹 , the operators are also split together

with 𝑣𝑖 becoming 𝐹𝑖 . After 𝐹 is split into 𝐹𝑚 and 𝐹𝑖 , we find their

optimal parameters and calculate their costs (Lines 10-13). Then, if

the sum of costs of 𝐹𝑚 and 𝐹𝑖 is smaller than the original cost, we

decide to split them actually (Lines 14-16).

Figure 11 shows the model space of 𝐹1 in Figure 10(a). We assume

that 𝑣1 is the main matrix multiplication, (𝑃 = 2, 𝑄 = 3, 𝑅 = 2), 𝑋
is 4, 𝑈 is 2 × 3, and 𝑉 is 4 × 2. 𝐿-space and 𝑅-space of 𝑣1 are 𝑉𝑇
and 𝑋 , respectively. 𝑂-space of 𝑣1 contains {𝑣2, 𝑣3, 𝑣4, 𝑣5}. Among

them, 𝑣2 and 𝑣4 form cuboids in the 𝑂-space, since they are ma-

trix multiplication. 𝑣4 has its own 𝐿-,𝑅-, and 𝑂-space recursively.

𝐿-space and 𝑅-space of 𝑣4 are 𝑣2 and 𝑈 , respectively. Since 𝑣1 is

partitioned with (𝑃 = 2, 𝑄 = 3, 𝑅 = 2), 𝑂-space of 𝑣1 is partitioned
with (𝑃 = 2, 𝑄 = 3, 𝑅 = 1), and 𝐿-space of 𝑣4 is again partitioned

with (𝑃 = 2, 𝑄 = 1, 𝑅 = 1), as explained in Section 3.3. The red

boxes show a partition 𝑃0,0,0 which will be assigned to a task. There

are a total of 2× 3× 2 = 12 tasks for 𝐹1 due to (𝑃 = 2, 𝑄 = 3, 𝑅 = 2).
In this situation, twelve input blocks of 𝑣2 in 𝑃0,0,0, i.e., eight blocks

of 𝑉𝑇 and four blocks of 𝑉 , must be replicated to six tasks, since

𝑄 × 𝑅 = 2 × 3 = 6. On the contrary, the input blocks of 𝑣4 in 𝑃0,0,0,

i.e., , six blocks of 𝑈 , must be replicated only to two tasks, since

𝑅 = 2. Thus, the more distant matrix multiplication from 𝑣1, i.e., 𝑣2,

tends to cause the higher cost than the less distant one from 𝑣1, i.e.,

𝑣4. Figure 10(b) shows the situation where 𝐹1 is split into 𝐹
′
1
and 𝑣2,

and similarly 𝐹0 is split into 𝐹
′
0
and 𝑣8. Thus, the outputs of 𝑣2 and

𝑣8 are materialized and fed into 𝐹 ′
1
and 𝐹 ′

0
, respectively.

𝑣":	𝑉&×𝑋

𝑣): 𝑉&×𝑉

𝑣*: 𝑣)×𝑈

𝒃(∗)

𝑈

𝒃(÷)

𝑀𝑀-space of 𝑣*

𝐿−space of 𝑣*

𝑘

𝑖

𝑗

(P=2, Q=3, R=2)
𝑀𝑀-space of 𝑣"

(P=2, Q=3, R=1)

(P=2, Q=1, R=1)
Figure 11: Model space of 𝐹1 in Figure 10(a).

5 IMPLEMENTATION
In this section, we briefly explain the implementation of FuseME.

We implement FuseME on top of Apache Spark, implement the

fusion plan generator by extending SystemML [7, 14], and imple-

ment the fused operators by extending DistME [18]. As a result, our

system allows users to describe their matrix queries (e.g., GNMF)

using Scala API and Declarative Machine Language of SystemML.

From the user query, the CFG of FuseME generates a fusion plan

and selects our CFO fused operators as physical operators.

ALGORITHM 3: ExploitationPhase
Input: 𝐺 : query plan in a DAG,

F : candidate partial fusion plans,

𝜃𝑡 : the memory budget per task

Output: F ∗: final partial fusion plans

1 F ∗ ← ∅;
2 for 𝐹 ∈ F do
3 𝑣𝑚 ← 𝑏𝑎(×) in 𝐹 having the largest (𝐼 × 𝐽 × 𝐾);
4 (𝑃∗, 𝑄∗, 𝑅∗) ← the optimal parameters for 𝐹 ;

5 𝑐𝑜𝑠𝑡 ← 𝐶𝑜𝑠𝑡 (𝑃∗, 𝑄∗, 𝑅∗, 𝐹 );
6 𝑆𝑃 ← all 𝑏𝑎(×) in 𝐹 , except 𝑣𝑚 ; /* 𝑆𝑃 = {𝑣𝑖 } */
7 desc. sort 𝑆𝑃 by the min. distance between 𝑣𝑖 and 𝑣𝑚 ;

8 for 𝑣𝑖 ∈ 𝑆𝑃 do
9 {𝐹𝑚, 𝐹𝑖 } ← split 𝐹 by 𝑣𝑚 and 𝑣𝑖 ;

10 (𝑃∗𝑚, 𝑄∗𝑚, 𝑅∗𝑚) ← the optimal parameters for 𝐹𝑚 ;

11 𝑐𝑜𝑠𝑡𝑚 ← 𝐶𝑜𝑠𝑡 (𝑃∗𝑚, 𝑄∗𝑚, 𝑅∗𝑚, 𝐹𝑚);
12 (𝑃∗

𝑖
, 𝑄∗
𝑖
, 𝑅∗
𝑖
) ← the optimal parameters for 𝐹𝑖 ;

13 𝑐𝑜𝑠𝑡𝑖 ← 𝐶𝑜𝑠𝑡 (𝑃∗
𝑖
, 𝑄∗
𝑖
, 𝑅∗
𝑖
, 𝐹𝑖 );

14 if 𝑐𝑜𝑠𝑡 > 𝑐𝑜𝑠𝑡𝑚 + 𝑐𝑜𝑠𝑡𝑖 then
15 F ← F ∪ 𝐹𝑖 ;
16 𝐹 ← 𝐹𝑚 ;

17 F ∗ ← F ∗ ∪ 𝐹 ;
18 return F ∗
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A block of a matrix is implemented using RDD (Resilient Dis-

tributed Datasets) [38], in particular, using a record of RDD, where

a key is the row and column indices (e.g., 𝑖 and 𝑘) of the block,

and a value is either DenseMatrix or SparseMatrix class. FuseME

supports a number of matrix operators, such as element-wise, ma-

trix multiplication, and transpose, which are implemented using

breeze
1
libraries of Scala. We implement them based on the trans-

formation operations of RDD, i.e., map, groupByKey, Cogroup, and

reduceByKey. For the row, column, and grid partitioning schemes

of FuseME, we extend the RDD partitioner class. We use the parquet

format for reading and writing the matrix data with HDFS. We note

that our FuseME does not consider data distribution of matrices as

the existing systems including SystemDS, DMac, and DistME do

not consider it and so cannot support sparse big matrices.

6 EXPERIMENTAL EVALUATION
In this section, we present experimental results in four categories.

• We compare the CFO with the existing BFO and RFO of

SystemDS [6] and DistME [18], in terms of the elapsed times

and communication cost (i.e., amount of transferred data in

the matrix consolidation and matrix aggregation steps). We

also vary the number of nodes.

• We check whether the 𝑃 , 𝑄 , and 𝑅 parameters determined

by the optimization in Section 3.3 can achieve the best per-

formance for the CFO. We also compare the pruning method

with the exhaustive method proposed in DistME [18].

• We compare the performance of the fusion plan of our FuseM-

E with that of the state-of-the art systems, SystemDS [6],

MatFast [37], and DistME [18], in terms of the elapsed times.

We use GNMF [28] as a query. We include DistME although

it does not support operator fusion, since it is the fastest

among the systems not supporting operator fusion.

• We compare the performance of a deep learning query, Au-

toEncoder [4], of FuseME with those of SystemDS [6] and

Tensorflow [1].

6.1 Experimental Setup
Datasets: For experiments, we use both real and synthetic datasets.

For real datasets, we useMovieLens [19] for a small size, Netflix [41]

for a medium size, and YahooMusic
2
for a large size. Table 2 summa-

rizes the statistics of three datasets. We mainly use those datasets

for evaluating the performance of GNMF. For synthetic datasets,

we generate matrices that have randomly and uniformly distributed

non-zero elements as in SystemDS [6] and DistME [18]. The density

of matrices are in the range of 0.0 to 1.0 and vary depending on the

experiment, where 1.0 means a fully dense matrix.

Table 2: Statistics of real datasets.

dataset size of matrix 𝑋 # of non-zeros of 𝑋

(users × items) (rating type: double)

MovieLens 283,228 × 58,098 27,753,444

Netflix 480,189 × 17,770 100,480,507

YahooMusic 1,823,179 × 136,736 717,872,016

1
https://github.com/scalanlp/breeze

2
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

Systems compared: We compare our FuseME with SystemDS,

MatFast, DistME, and TensorFlow. We use the original codes for

SystemDS
3
, MatFast

4
, DistME (from the authors), and TensorFlow

2.3.0. SystemDS supports the state-of-the-art fusion method GEN [8,

12]. MatFast uses a simple folded operator that fuses consecutive

element-wise operators. DistME has CPU and GPU versions.We use

its CPU version for fair comparison. SystemDS, DistME and FuseME

all are implemented on top of Apache Spark [39]. TensorFlow uses

TensorFlow XLA [15] to generate a fusion plan of the DAG.

H/W and S/W setting: We conduct all the experiments on the

same cluster of one coordinator node and eight worker nodes. All

nodes are connected via 1Gbps Ethernet. Each node is equipped

with an eight-core 3.6GHz CPU, 128GB main memory, 10 TB HDD

for Spark and HDFS. In terms of software, we use Ubuntu 18.04.3

LTS, Spark 2.4.5, Hadoop 2.7.2, and TensorFlow 2.3.0. We set the

number of tasks per node to 12 (𝑇𝑐 = 12), and so the memory budget

per task is 𝜃𝑡 = 10GB. We use the block size of 1000 × 1000 in all

experiments, which is the default size in other systems such as

MatFast and SystemDS. We set the number of instances per node

to 12 for TensorFlow.

6.2 Comparison of Distributed Fused Operators
We compare the performances of the BFO, RFO, CFO, and DistME

using synthetic matrices for the query 𝑋 ∗ 𝑙𝑜𝑔(𝑈 × 𝑉𝑇 + 𝑒𝑠𝑝),
where 𝑋 is sparse, and both 𝑈 and 𝑉 are dense. Here, 𝑋 has 𝐼 ×
𝐽 blocks, 𝑈 has 𝐼 × 𝐾 , and 𝑉 has 𝐽 × 𝐾 . We use three types of

datasets, as in [17, 18]: matrices varying two large dimensions (𝐼 =

𝐽 > 𝐾), matrices varying a common dimension (𝐾 ≤ 𝐼 = 𝐽 ), and

matrices varying the density (0 ≤ |𝑋 | ≤ 𝐼 × 𝐽 ). Both BFO and RFO

are evaluated on SystemDS, and the CFO is evaluated on FuseME.

We note that SystemDS uses only either BFO or RFO, which is

determined depending on the input matrices. It uses the BFO, if the

number of partitions of 𝑋 is smaller than 𝐼 or 𝐽 . Otherwise, it uses

the RFO.

We denote the BFO and RFO of SystemDS by SystemDS(B) and

SystemDS(R), respectively. Table 3 summarizes the sizes of three

types of datasets used, the density of 𝑋 used, and the optimal

parameters (𝑃∗, 𝑄∗, 𝑅∗) used in the CFO of FuseME. The optimal

parameters are automatically determined as in Section 3.3. Fig-

ures 12(a), (b), and (c) show the elapsed times of the BFO, RFO, CFO,

and DistME for three types of datasets, and Figures 12(e), (f), and

(g) show their corresponding communication costs. In the figures,

T.O. means time out (longer than 12 hours).

Matrices varying two large dimensions: Figures 12(a) and (e)

show that the CFO of FuseME significantly outperforms the BFO

of SystemDS and DistME in terms of both elapsed times and com-

munication cost. In this experiment, 𝑈 and 𝑉 are tall matrices (i.e.,

𝐼 > 𝐾 and 𝐽 > 𝐾 ). SystemDS uses the BFO because the number of

partitions of 𝑋 is smaller than 𝐼 and 𝐽 due to the low density of

𝑋 (i.e., 0.001). The BFO times out when 𝑛 = 750𝐾 . The improvement

of the CFO compared to the BFO becomes more marked as 𝑛 gets

larger. In details, in terms of elapsed times, the improvement is

21×, 85×, and 238×, when 𝑛 is 100𝐾 , 250𝐾 , and 500𝐾 , respectively.

In terms of communication cost, the improvement is 3.9×, 17.1×,
and 64×, when 𝑛 is 100𝐾 , 250𝐾 , and 500𝐾 , respectively. FuseME

3
https://github.com/apache/systemds

4
https://github.com/purduedb/MatRel

Session 26: Data Management for ML 3 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1900



362

4773
36360

87
281

912 2014

17
56

153 279

1

10

100

1000

10000

100000

100K 250K 500K 750K

El
ap

se
d 

tim
e 

(s
ec

)

Input matrices (n ✕ 2K ✕ n ) 

SystemDS(B)

(a) matrices varying two large dimensions 
(elapsed time)

(b) matrices varying a common large dimension 
(elapsed time)

2170 7033

417 617 1087
4345

225 361 591
2305

1

10

100

1000

10000

2K 5K 10K 50K

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Input matrices (100K ✕ n ✕ 100K)

SystemDS(R) DistME FuseME

1587 1786 3553 3912

138 193 339 515

65 97 187 246

1

10

100

1000

10000

0.05 0.1 0.5 1Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Input matrices (100K ✕ 2K ✕ 100K)
(c) matrix varying the density

(elapsed time)

(e) matrices varying two large dimensions 
(communication cost)

41.9

481.9

3891

34.9
113.6

331
753.3

10.7
28.2

60.6 98.4

1

10

100

1000

10000

100K 250K 500K 750KAm
ou

nt
 o

f d
at

a 
(G

B)

Input matrices (n ✕ 2K ✕ n ) 

302.9
770.4

57.2
134.4 236.3

528

27.2
75.3 135.7

327.3

1

10

100

1000

2K 5K 10K 50KAm
ou

nt
 o

f d
at

a 
(G

B)

Input matrices (100K ✕ n ✕ 100K)

155.1
294.6 345.8 374.6

48.1 51.2 73.3 87

23.2 35.6 43.3 57

1

10

100

1000

0.05 0.1 0.5 1Am
ou

nt
 o

f d
at

a 
(G

B)

Input matrices (100K ✕ 2K ✕ 100K)

(f) matrices varying a common large dimension 
(communication cost)

(g) matrix varying the density
(communication cost)

T.
O.

T.
O.

T.
O.

T.
O.

T.
O.

T.
O.

3870 2769 1786

272 175
97

50

500

5000

2 4 8El
ap

se
d 

Ti
m

e 
(s

ec
)

number of nodes

SystemDS(B) FuseME

4186 3416 2170

571 364
225

100

1000

10000

2 4 8

El
ap

se
d 

Ti
m

e 
(s

ec
)

number of nodes

SystemDS(R) FuseME

(d) Varying # of nodes
(100K✕ 2K ✕100K, 0.1)

(h) Varying # of nodes
(100K✕ 2K ✕100K, 0.2)

Figure 12: Performance comparison among distributed fused operators: BFO (SystemDS(B)), RFO (SystemDS(R)), and
CFO (FuseME). DistME is compared as the fastest one among the systems not supporting operator fusion.

Table 3: Statistics of synthetic datasets (𝐾 : thousand).

type size of 𝑛 density of 𝑋 (𝑃∗, 𝑄∗, 𝑅∗)
Matrices 100𝐾 0.001 (8,6,2)

varying two 250𝐾 0.001 (8,6,2)

large dimensions 500𝐾 0.001 (8,6,2)

(𝑛 × 2𝐾 × 𝑛) 750𝐾 0.001 (8,6,2)

Matrices 2𝐾 0.2 (12,8,1)

varying a common 5𝐾 0.2 (8,6,2)

large dimension 10𝐾 0.2 (6,4,4)

(100𝐾 × 𝑛 × 100𝐾 ) 50𝐾 0.2 (4,3,8)

Matrices 100𝐾 0.05 (8,6,2)

varying 100𝐾 0.1 (8,6,2)

the density 100𝐾 0.5 (12,8,1)

(𝑛 × 2𝐾 × 𝑛) 100𝐾 1.0 (12,8,1)

significantly outperforms DistME in terms of both elapsed time

and communication cost. It is because FuseME gains the advan-

tages of sparsity exploitation and no materialization of intermediate

matrices due to operator fusion.

Matrices varying a common large dimension: Figures 12(b)
and (f) show similar tendencies with Figures 12(a) and (e). SystemDS

uses the RFO because the number of partitions of 𝑋 is larger than

𝐼 and 𝐽 due to the high density of 𝑋 (i.e., 0.2). The RFO times out

when 𝑛 is 10𝐾 and 50𝐾 .

Matrices varying the density: Figures 12(c) and (g) show that

the CFO still significantly outperforms the BFO, RFO, and DistME

in terms of both elapsed times and communication cost. SystemDS

uses the BFO when 𝑋 has a relatively low density (i.e., 0.05, and

0.1), and uses the RFO when 𝑋 has a relatively high density (i.e., 0.5

and 1.0). Both elapsed time and communication cost in this dataset

increase less rapidly compared to the above two types of datasets,

since the density increases in this dataset, while the dimension size

increases in the above two datasets.

Varying the number of nodes: Figures 12(d) and (h) show the

performance of BFO, RFO, and CFO using the dataset of 100 K × 2 K

× 100 K in Table 3 while varying the number of nodes. BFO is used

by SystemDS in Figure 12(d) since the density is 0.1, while RFO is

used in Figure 12(h) since the density is 0.2. In the figures, CFO

consistently outperforms both BFO and RFO. When the number of

nodes is two, BFO and RFO still have a relatively high communica-

tion cost of 294.6 GB and 302.9GB, respectively. On the contrary,

CFO has a relatively small cost of 16.7 GB. As the number of nodes

increases, the elapsed times of all three methods decrease due to

utilizing more number of tasks, and the performance gap between

CFO and other methods slightly gets larger.

Overall analysis: In Figure 12, the bigger difference on elapsed

time than on communication cost is mainly due to (1) the difference

in the number of tasks and (2) the issue of Apache Spark. First, in

Figure 12(a), the size of 𝑋 is small in byte due to its low density,

and so 𝑋 is repartitioned into a small number of partitions (e.g., 13

for 𝑛 = 100𝐾 ). Thus, BFO does not utilize the maximum number of

tasks, while RFO and CFO utilize it. Second, as the communication

cost increases (e.g., about 3.9 TB when 𝑛=500K in Figure 12(e)),

Apache Spark tends to occupy CPU cores more longer time for data

shuffling, which makes the tasks take longer time to compute their

partitions.

We note that the test query in this section is simple, and so the

plan generator is not used in both SystemDS and FuseME. The

entire query is executed as a single fused operator in both systems.

In Figure 12(c), CFO significantly outperforms BFO and RFO, which

shows the importance of CFO itself.

6.3 Optimization of (P,Q,R) Parameters
Figures 13(a)-(c) show 𝐶𝑜𝑠𝑡 () in Eq.(2), the amount of transferred

data, and the elapsed times, while varying (𝑃 , 𝑄 , 𝑅) in the CFO for

the same query with Section 6.2 on the matrices of 1𝑀 × 5𝐾 × 1𝑀 .

In Figure 13(a), the optimization method in Section 3.3 determines

(𝑃∗ = 5, 𝑄∗ = 4, 𝑅∗ = 5) as the optimal parameters. Our clus-

ter used in the experiments has a relatively low network band-

width of 1Gbps and a relatively high computational bandwidth of

546GFLOPS. Thus, 𝐶𝑜𝑚𝑚() in Eq.(4) has a major impact on deter-

mining the optimal parameters. In Figures 13(b)-(c), the optimal
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parameters actually achieve the minimum amount of transferred

data and the minimum elapsed time. Figure 13(d) shows the elapsed

times of finding the optimal parameters of the exhaustive and prun-

ing methods. As the size of search space of 𝐼 × 𝐽 × 𝐾 increases

exponentially, the elapsed time of the exhaustive method also in-

creases exponentially. In contrast, the elapsed time of the proposed

pruning method is very small and stable.
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Figure 13: Optimization of (𝑃,𝑄, 𝑅) parameters.

6.4 Comparison of Fusion Plans
We compare the performance of the fusion plans of SystemDS [6],

MatFast [37], DistME [18], and FuseME for the GNMF query in

Eq.(6). We use real datasets in Table 2. As described in Eq.(6), GNMF

factorizes a given rating matrix𝑋 (i.e.,𝑢𝑠𝑒𝑟𝑠×𝑖𝑡𝑒𝑚𝑠) into two factor
matrices 𝑉 (i.e., 𝑢𝑠𝑒𝑟𝑠 × 𝑓 𝑎𝑐𝑡𝑜𝑟 ) and 𝑈 (i.e., 𝑓 𝑎𝑐𝑡𝑜𝑟 × 𝑖𝑡𝑒𝑚𝑠) such
that 𝑋 ≃ 𝑉𝑈 . Each element of the rating matrix 𝑋 , i.e., 𝑥𝑖, 𝑗 , means

the rating of the 𝑖-th user for the 𝑗-th item. If the 𝑖-th user has never

used the 𝑗-th item, 𝑥𝑖, 𝑗 in 𝑋 is zero. After executing GNMF, we can

find the predicted rating matrix 𝑉𝑈 , which may have a non-zero

value (𝑣𝑢)𝑖, 𝑗 . The recommendation system can recommend the 𝑗-th

item to the 𝑖-th user if (𝑣𝑢)𝑖, 𝑗 is a high rating value.

Figures 14(a)-(c) shows the accumulated elapsed times for Movie-

Lens, Netflix and YahooMusic, when the factor dimension 𝑘 =

200. In Figure 14(a), FuseME outperforms MatFast, SystemDS, and

DistME by 7.37×, 2.93×, and 2.18×, respectively. Although DistME

cannot use operator fusion, it outperforms both SystemDS and

MatFast. It shows that cuboid-based partitioning may be more im-

portant than operator fusion for performance. FuseME shows the

best performance since it not only uses cuboid-based fused opera-

tor (CFO) but also fuses many operators into a single fused operator.

It can fuse much more operators than SystemDS and MatFast, as

shown in Figure 10. SystemDS and MatFast fuses only two element-

wise operators, ∗ and /, for the same query. Compared to DistME,

FuseME computes multiple matrix multiplications in a fused oper-

ator using a single shuffle, while DistME has to compute each of

them using a shuffle. In Figure 14(b), FuseME outperforms MatFast,

SystemDS, and DistME by 8.68×, 3.62×, and 2.45×, respectively.
Figures 14(e)-(g) shows the results when the factor dimension

𝑘 = 1000, which are similar to Figures 14(a)-(c). In Figure 14(g),

MatFast fails due to O.O.M. The performance gap gets larger as the

factor dimension 𝑘 increases. In Figure 14(g), FuseME outperforms

SystemDS and DistME by 6.48× and 2.69×, respectively, while it
outperforms SystemDS andDistME by 3.12× and 1.96×, respectively
in Figure 14(c).

Figures 14(d) and (h) show the amount of the data shuffled at

each iteration. FuseME significantly reduces the amount of data

compared with MatFast, SystemDS, and DistME due to its CFO and

fusion plan. For YahooMusic when 𝑘 = 200, it reduces communica-

tion overhead of MatFast, SystemDS, and DistME by 59.8×, 23.9×,
and 7.9×, respectively.

We note that the performance improvement of FuseME is bigger

for the simple query in Section 6.2 than for the complex query (i.e.,

GNMF) in Section 6.4. The simple query is relatively communication

intensive since it includes only a single matrix multiplication. The

complex query is relatively computation intensive since it includes

four matrix multiplications. The communication cost is largely

dependent on (𝑃 , 𝑄 , 𝑅) as in Eq.(4). In contrast, the computation

cost is less dependent on (𝑃 , 𝑄 , 𝑅) as in Eq.(5). Thus, our method

tends to be more effective for relatively communication-intensive

queries.

6.5 Comparison of Deep Learning Workload
We compare the performance of the fusion plans of SystemDS [6],

TensorFlow [1], and FuseME for the AutoEncoder query [4]. We

measure the elapsed time of one epoch. We use dense synthetic

datasets in [8] for input matrix data. In detail, the input matrix is

the number of inputs × features, and we vary both the number of
inputs and features from 𝑛 = 1K to 𝑛 = 100K. In general, deep

learning queries including AutoEncoder is processed in a batch.
We follow the architecture of AutoEncoder

5
used in SystemDS,

where the encoder (or the decoder) consists of two fully connected

hidden layers. Thus, the encoder has two weight matrices,𝑊 1 (ℎ1×
features) and𝑊 2 (ℎ2 × ℎ1), where ℎ1 and ℎ2 are the numbers of

hidden neurons of the first and the second layers, respectively.

Likewise, the decoder has two weight matrices,𝑊 3 (ℎ1 × ℎ2) and
𝑊 4 (features × ℎ1).

Figure 15(a) shows the elapsed times for varying the size of

input matrix. For 𝑛 = 10K, FuseME outperforms SystemDS and

TensorFlow by 6.05× and 3.32×, respectively. In Figure 15(b), by

using the smaller batch, the elapsed times of all systems increase

since the number of steps of updating gradients for one epoch also

increases. In Figure 15(c), as batch increases, SystemDS fails due to

O.O.M. In Figure 15(d), FuseME outperforms TensorFlow by 3.32×
for ℎ1 = 500 and ℎ2 = 2 and by by 8.77× for ℎ1 = 5000 and ℎ2 = 20.

7 RELATEDWORK
There have been proposed a number of distributed matrix computa-

tion systems. They can be classified into two categories: the systems

based on MapReduce and the ones not based on MapReduce. The

former systems include SystemML [7, 14], DMac [36], DistME [18],

Cumulon [23], MatFast [37], and SystemDS [6]. SystemML [7, 14]

translates new algorithms written using an R-like high-level declar-

ative interface into a DAG of Spark jobs and rewrites the DAG

to replace patterns with hand-coded distributed fused operators.

5
https://github.com/apache/systemds/scripts/builtin/autoencoder_2layer.dml
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DMac [36] exploits matrix dependencies for a complex matrix

query like GNMF to reduce the overall communication overhead.

DistME [18] supports the CuboidMM for large-scale distributed

matrix multiplication to achieve the lowest communication cost for

a given memory limit per task. However, both DMac and DistME do

not support operator fusion. MatFast [37] stores the output matrix

of an operator using the partitioning scheme (e.g., row, column)

so as to reduce the communication cost for the next operator in

the query plan. Cumulon [23] uses a query optimization technique

to estimate monetary cost under the time constraints for matrix-

based algorithms and supports generic masked fused operators to

exploit sparsity. SystemDS [6] provides a template-based fusion

plan generator for automatic operator fusion instead of hard-coded

fused operators. It however has a relatively high communication

cost since it uses either BFO or RFO as a distributed fused operator

and tends to avoid generating a fusion plan containing large-scale

matrix multiplication.

The latter systems include TensorFlow XLA [1, 15], Julia [5, 25],

MATLAB [29], and TC [35]. These systems provide practical appli-

cations using operator fusion with code generation, but those rely

on the fusion plans generated by manual declaration or heuristics.

Recent works [11, 13, 34, 40] consider operator fusion running on

heterogeneous hardware such as GPU and FPGA.

8 CONCLUSIONS
In this paper, we have proposed a distributed fused operator called

CFO that performs the optimal cuboid partitioning elastically for

memory limit of a task, sizes of input matrices, computational

power, and communication speed. We also have proposed a novel

fusion plan generator called CFG, which can find a large fusion

plan that contains even large-scale matrix multiplications. We im-

plement FuseME integrating our CFO and CFG seamlessly on top

of Apache Spark. Through extensive experiments, we have demon-

strated that our CFO improves the elapsed time by up to 238× and

reduces the communication cost by up to 64× compared to the

existing methods. We have also shown that FuseME outperforms

the state-of-the-art systems including SystemDS by orders of mag-

nitude. As future work, we will extend our FuseME to exploit GPU

acceleration and achieve a better load balancing by considering

differences in sparsities of cuboids, which may further improve the

performance. We will also try to re-implement FuseME based on

Message Passing Interface (MPI), which may be able to reduce the

number of replications of the same cuboid and so further improve

the performance.
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